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ABSTRACT
Due to the proliferation of social media, a growing number of users
search for and join group activities in their daily life. This devel-
ops a need for the study on the ranking-based group identification
(RGI) task, i.e., recommending groups to users. The major chal-
lenge in this task is how to effectively and efficiently leverage both
the item interaction and group participation of users’ online be-
haviors. Though recent developments of Graph Neural Networks
(GNNs) succeed in simultaneously aggregating both social and
user-item interaction, they however fail to comprehensively re-
solve this RGI task. In this paper, we propose a novel GNN-based
framework named Contextualized Factorized Attention for Group
identification (CFAG). We devise tripartite graph convolution layers
to aggregate information from different types of neighborhoods
among users, groups, and items. To cope with the data sparsity is-
sue, we devise a novel propagation augmentation (PA) layer, which
is based on our proposed factorized attention mechanism. PA layers
efficiently learn the relatedness of non-neighbor nodes to improve
the information propagation to users. Experimental results on three
benchmark datasets verify the superiority of CFAG. Additional de-
tailed investigations are conducted to demonstrate the effectiveness
of the proposed framework.
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1 INTRODUCTION
Given the difficulties in information collection and decision-making
among the overwhelming options for individuals, a growing num-
ber of customers prefer to join specific groups for suggestions in
advance of consumption. For example, on the Steam video game
platform1, if a video game player hesitates aboutwhether she should
purchase a newly released game, she would seek suggestions from
a group of players who have played that game for a period. On-
line groups offer spaces for users to share experiences, which in
turn provides a reference to other group members. It assists them
in locating their demands accurately and even influences their in-
terests in items. We illustrate a toy example in Figure 1, Alex is
interested in Motorcycle. Hence, he would like to join a Motor-
cyclists group. In terms of platforms, users’ attachment to online
groups can significantly increase the participation and retention
rate of their users [38]. Compared to promoting content directly to
potential users [25], recommending users to groups based on their
interests is a more feasible way to help platforms build emotional
bonds with users for maintaining long-term stickiness, which is
however under-explored.

Most existing recommender systems have been widely adopted
to discover relevant content [22], products [13] or services [16].
The recent successes of GNNs [11, 27] inspire graph-based recom-
mender systems [14, 31]. These graph-based recommender systems
focus on bipartite recommendation tasks, e.g., user-item recommen-
dation [14, 31, 33]. These methods allow information to propagate
over graph through high-order connectivity.

However, directly applying those bipartite graph-based approaches
to user-group interactions for prediction is far from comprehensive.
In this paper, we argue that successfully recommending groups to
users requires combined modeling of both group participation and
1https://store.steampowered.com/
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Figure 1: Illustration of group identification.

item interactions. On one hand, users may be interested in a group
similar to groups they joined before. We demonstrate this via a toy
example in Figure 1(a). Alex visited Singapore and Malaysia before
and became a member of corresponding tourist groups. Therefore,
he would like to join a tourist group in Thailand as all of them are
in Southeast Asia. On the other hand, users may join a new group
because of item interests, even though never participating in any
relevant groups before. For example in Figure 1, Bill is fond of mo-
torcycles. As such, we should recommend him a motorcycle riders
group as Figure 1(b) demonstrated. Therefore, only when simultane-
ously characterizing both group participation and item interactions
can we develop a satisfying group identification system.

In this work, we define recommending groups to users as ranking-
based group identification (RGI) problem. RGI problem is distin-
guishable from group recommendation [1, 24, 37] and community
detection [8, 17], where the former is to recommend items to groups
and/or users by leveraging group information while the latter is to
cluster users. As aforementioned, incorporating both item interac-
tions and group participation is necessary for RGI problem, which
is rather challenging from two perspectives.

Firstly, we should consider high-order connectivity in RGI prob-
lem. We demonstrate the high-order connectivity in Figure 1(c),
where Carl is considering buying a newly-released iPhone. Thus,
he joins the iPhone Fans group to discuss with others. In this group,
other members also have interactions with iPad. As such, Carl may
also have potential interests in groups relevant to iPad. Though
Carl has no direct connection with iPad, we can still discover this
potential interest through high-order connections, i.e., user-group-
user-item-group in this case. Existing works on recommender sys-
tems harness additional preferences (i.e. item interactions in this
paper) as side information [1, 6, 12], which is unable to resolve
high-order connectivity.

Secondly, the relatedness of items is crucial for identifying users’
group interests. To be more specific, a user may be interested in a
group if its members share similar items’ interests with this user,
even though not exactly the same item that this user has interactions
with. We illustrate this in Figure 1(d). Daniel subscribes to NBA
basketball games stream2. He would be interested in a Football
Fans group where the members are all football fans having UEFA

2https://www.espn.com/nba/

football games stream3 subscriptions as a result of the relatedness
between NBA and UEFA.

To this end, we investigate the RGI problem upon a social tri-
partite graph, which includes user, group, and item as nodes and
their associated interactions as edges. We decide to propagate in-
formation over this graph to learn representations of nodes. The
designing reasons are threefold. First, this tripartite graph incor-
porates both group participation and item interactions. Second,
propagating information over a social tripartite graph enables the
high-order connectivity characterization. Third, similar representa-
tions are able to reveal the relatedness of RGI problem.

However, directly adopting existing methods for RGI problem
is not suitable since we observe severe sparsity issues. In other
words, many users have few group/item interactions. Under this
circumstance, aggregation over the tripartite graph is less likely to
learn high-quality representations of nodes due to the unavailability
of adequate propagation paths.

To this end, we propose a novel framework, named Contextual-
ized Factorized Attention for Group identification (CFAG). CFAG
is a GNN over our proposed social tripartite graph. To resolve the
sparsity issue, we propose to endow the model with the ability of
discovering more potential interactions of users during training
via factorized attention mechanism. More concretely, we propose
learning weights between users and all other groups/items that
they have no interaction with. In this way, the information from po-
tential groups and items is able to propagate to users. The weights
reflect the potential impacts of those groups/items and construct the
propagation paths. Nonetheless, training all the pair-wise weights
is of high time- and space- complexity. Instead, we learn contextual
embeddings for both groups and items. Then, the weights between
a user and all candidate groups and items are inferred based on the
embedding similarity between candidates and users’ participated
groups and interacted items, respectively. Finally, the weights be-
tween this user and candidates are calculated as the attention score.
To train a CFAG, besides the contextual embedding for items and
groups, all nodes have personalized embeddings. We iteratively
update the personalized embedding and contextual embedding via
propagation over the graph. The rankings score between a user
and a group is based on their final personalized embeddings from
the output layer. And we optimize the framework based on BPR
loss [23]. We highlight our key contributions as follows:

• We propose a novel framework CFAG, a GNN-based model for
group identification, which can propagate the information on
the social tripartite graph and conduct recommendation.

• We devise novel propagation augmentation layers with factor-
ized attention mechanism in CFAG to cope with the sparsity
issue, which explores non-existing interactions and enhances the
propagation ability on graphs with high sparsity.

• We collect and release one large dataset for RGI task. We con-
duct extensive experiments on this dataset and two other public
datasets. The significant improvements of CFAG on all datasets
indicate its superiority in tackling the RGI problem.

3https://www.uefa.com/uefaeuropaleague/
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2 RELATEDWORKS
Since there is no previous work targeting the exact same task, i.e.,
recommending groups to users based on graphs, we will introduce
some closely related work: (1) Community detection, which shares
similar goals with our task, is introduced in Section 2.1. (2) Recom-
mender systems that utilize users’ social information are reviewed
in Section 2.2. (3) With similar deep learning techniques, GNN-
based methods are introduced in Section 2.3. In each subsection,
we discuss their relationships to the proposed RGI task.

2.1 Group Recommender Systems
Group recommender systems refer to recommending groups to their
potential members. Traditional group recommender systems apply
various algorithms to recover user-group membership matrices
with available side information. For example, semantic information
from descriptions of groups [3] and visual information from photos
shared by users [28] can be incorporated with a collaborative filter-
ing framework to perform personalized group recommendations.
User behaviors in different time periods [30, 34], such as joining
groups, can also be leveraged for recommending groups to users.
However, the requirement of side information degrades the perfor-
mance of those methods when recommending groups to users with
only interaction information. Some recent works [18, 19] investigate
recommending groups to users with only user-group interactions.
They directly characterize the bipartite structure between users
and groups, while item interaction information is ignored.

Besides recommending groups to users, the term group recom-
mendation in literature also refers to recommending items to a
group of users [1, 24], which differs from the focus in this paper.

2.2 Social Information-based RS
Social relations between users have been applied to the recom-
mender system to alleviate data sparsity problem [15, 35]. Research
in social recommendation combines a user-user graph and the bi-
partite user-item graph to better understand users’ preferences on
items [10, 36]. Friend recommendation is another research topic
based on the homogeneous graph formed by social relations to
find possible social links between users [5, 9]. For these RS involv-
ing social relations among users, the main challenge lies in how
to model the influence between users [29]. Typical approaches ad-
dressing this challenge contain randomwalk [7], GAT [6] and graph
embedding [32].

In contrast to using social information to predict possible links
among user-user pairs or user-item pairs, our work focuses on
predicting links between users and groups. Different from user-
user or user-item relation, user-group relation could be entangled
promiscuously [1, 37].

2.3 Graph-Based RS
GNN has been widely leveraged to address the most important
challenges in RS nowadays given its powerful capability of learning
informative representations in graph data. The GNN-basedmethods
broadly fall into three classes from the model perspective: (i) Graph
Convolutional Network based RS [14, 31, 33]; (ii) Graph Attention
Network based RS [26, 27]; and (iii) Gated Graph Neural Network
based RS [4].

Most previous works on Graph-based RS only focus on user-
item bipartite graph [14]. It is difficult to directly apply these works
to group identification tasks with three relations to be managed:
user-item, group-item and user-group relations.

Some graph-based works in group-item recommendation also
model different interactions between users, items and groups [1].
However, the key challenge of those works is how to aggregate the
preference of group members [1, 24]. Our task differs significantly
in that our goal is to predict the preference of individual users on
groups he/she never interacted with.

3 PRELIMINARIES
In this section, we first define the social tripartite graph and then
formulate the problem of rank-based group identification (RGI).

Definition 1. (Social Tripartite Graph). Given three disjoint
nodes, i.e, user nodes set U, group nodes set G, and item nodes set I,
and given their interactive edges, i.e. user-group edges 𝐸U,G , user-
item edges 𝐸U,I , and group-item edges 𝐸G,I , we define a social
tripartite graph as T = {𝑉 , 𝐸}, where 𝑉 = U ∪ I ∪ G and 𝐸 =

𝐸U,G ∪ 𝐸U,I ∪ 𝐸G,I .

The social tripartite graph is an undirected and unweighted
heterogeneous graph. In the following sections, we denote user
nodes as𝑢, group nodes as𝑔, and item nodes as 𝑖 . An edge (𝑢 𝑗 , 𝑔𝑘 ) ∈
𝐸U,G in the graph represents that user 𝑢 𝑗 ∈ U is a member of a
group 𝑔𝑘 ∈ G. Similarly, an edge in 𝐸U,I or 𝐸G,I represents that a
user or a group shows preference on an item. Note that if we have
no item set available, i.e. I = ∅, this tripartite graph degenerates
to a bipartite graph, which is utilized in existing recommender
systems.

During computation, we use adjacency matrices to represent
the edges. Specifically, we define the user-group adjacency matrix
𝑋𝑋𝑋 = [𝑥 𝑗𝑘 ] ∈ R |U |×|G | to represent the user-group interactions,
where 𝑥 𝑗𝑘 = 1 if an edge (𝑢 𝑗 , 𝑔𝑘 ) exists in the social tripartite
graph, i.e., user 𝑢 𝑗 is a member of group 𝑔𝑘 , and otherwise 𝑥 𝑗𝑘 =

0. Analogously, we define user-item and group-item adjacency
matrices as 𝑌𝑌𝑌 ∈ R |U |×|I | and 𝑍𝑍𝑍 ∈ R |G |×|I | , respectively. Then,
the target is to conduct ranking-based edge prediction, which is
defined as:

Definition 2. (Ranking-based Group Identification). Given
a social tripartite graph T , the ranking-based group identification
(RGI) for a user 𝑢 is to predict a ranking list of groups {𝑔1, 𝑔2, . . . , 𝑔𝑘 },
with which this user has no interactions.

In other words, we recommend a list of groups that this user 𝑢 is
of potential interest in RGI. Note that we distinguish the group as
another entity rather than a simple union of users due to its special
characteristics, e.g. group information.

4 METHOD
In this section, we present the proposed CFAG model for the group
identification task. The framework of CFAG is shown in Figure 2.
We start by introducing all embedding layers to be trained in this
framework. Next, we demonstrate how to aggregate the interactions
from different neighborhoods on the social tripartite graph. Specifi-
cally, we adopt tripartite graph convolution networks to learn the
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Figure 2: The framework of CFAG. This is the computation process when inferring the score between user 𝑢1 and group 𝑔2.

user and group personalized embeddings for recommending groups.
We further propose a Factorized Attention module for user-item
interactions and user-group interactions to infer the relevance of
each group and each item to the target user.

4.1 Embedding layer
Wemaintain an embedding layer E ∈ R𝑑×( |U |+|G |+ |I |) , where each
column represents the trainable personalized embedding for each
node 𝑣 ∈ 𝑉 in the graph. In addition to the personalized embedding,
we also have contextual embedding layers for both items and group,
denoted as C𝑖 ∈ R𝑑×|I | and C𝑔 ∈ R𝑑×|G | , respectively. They are
used and trained for Factorized Attention to infer the influence
between groups (items) for each user, respectively. More details
will be presented in Sec. 4.3.

4.2 Tripartite Graph Convolution
GNNs learn node embeddings by propagating information from
neighbors to center nodes. However, existing GNN layers are not
suitable due to the heterogeneity of the social tripartite graph, i.e.
the distinctions of different types of nodes. Hence, we devise a novel
tripartite graph convolution to propagate information between
users, groups and items. Instead of directly aggregating embed-
dings of neighbors, we employ partition layers to divide neighbor
information as two branches for aggregation. In the following part
of this section, we explain each module of tripartite graph convolu-
tion over the center node group 𝑔. The tripartite graph convolution
over user and items can be derived in analogy. To be more spe-
cific, partition layers divide group information e𝑔 as group-user
information e(𝑢)𝑔 and group-item information e(𝑖)𝑔 for the following
propagation to users and items, respectively:

e(𝑢)𝑔 , e(𝑖)𝑔 = PT(e𝑔), (1)

where PT() denotes the partition layer. We justify various parti-
tion layers, for example PT() can be two linear transformations,
i.e., e(𝑢)𝑔 = W(𝑢)

𝑔 e𝑔 , e
(𝑖)
𝑔 = W(𝑖)

𝑔 e𝑔 . Moreover, it can be a simple
division over the dimension, i.e., [e(𝑢)𝑔 ∥e(𝑖)𝑔 ] = e𝑔 , where ∥ is the
concatenation of two embeddings. In fact, experiments in Sec. 5.3
justify the superiority of later simple division over the dimension.
The partition layers distinguish the impacts of different types of
neighbors. Examples of dividing the information of group 𝑔2 and
user 𝑢1 via partition layers are illustrated in Figure 2.

Hereafter, we learn node embeddings by aggregating correspond-
ing neighboring information from partition layers. The group in-
formation aggregated from both neighbor users and items are as
follows:

h𝑢→𝑔 = AGG({e(𝑔)𝑢 |𝑢 ∈ N (𝑢)
𝑔 })

h𝑖→𝑔 = AGG({e(𝑔)
𝑖

|𝑖 ∈ N (𝑖)
𝑔 }),

(2)

where h𝑢→𝑔 and h𝑖→𝑔 denote the user and item information prop-
agated to group 𝑔, respectively. The AGG() represents the aggrega-
tion layers, such as the GCN [21] aggregation. These aggregation
layers propagate associated information to group 𝑔. For example,
user-to-group information h𝑢→𝑔 is aggregated from the group par-
tition of user embeddings, denoted as e(𝑔)𝑢 . N (𝑢)

𝑔 represents all
the neighbor users of group 𝑔. In analogy, item-to-group informa-
tion h𝑖→𝑔 is aggregated from the group partition of neighbor item
embeddings, i.e., e(𝑔)

𝑖
.

Next, we combine the information from two branches as one
embedding for group 𝑔 via merging layers MG() as follows:

e∗𝑔 = MG(h𝑢→𝑔, h𝑖→𝑔), (3)

where e∗𝑔 is the output embedding for group 𝑔. We demonstrate
the merging layers in Figure 2. In this paper, we investigate dif-
ferent types of MG(·, ·) layers, including direct concatenation,
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Figure 3: Illustration of propagation augmentation on
group-user neighbors. We aggregate all groups via learned
group contextualization attention.

concatenation before fully-connection, and concatenation after
fully-connection.

Multi-layer propagation. By stacking multiple those layers in
Eq. (1), (2) and (3), we construct the multi-layer propagation pattern
of tripartite graph convolution and rewrite the Eq. (3) as follows:

e(𝑙)𝑔 = MG(h(𝑙)𝑢→𝑔, h
(𝑙)
𝑖→𝑔

), (4)

where h(𝑙)𝑢→𝑔 and h
(𝑙)
𝑖→𝑔

denote the information propagation in Eq. (2)
on the 𝑙-th layer. In Figure 2, we stack 𝐿 layers and yield the final
embedding e(𝐿)𝑔2 and e(𝐿)𝑢1 for group 𝑔2 and user 𝑢1, respectively.

4.3 Propagation Augmentation
In RGI problem, we observe severe sparsity issues in the graph,
e.g. few group participation for users. Those sparsity issues impair
the propagation over the graph, and thus, those nodes with few
neighbors are unable to be well trained. To this end, we propose
a propagation augmentation (PA) layer before the tripartite graph
convolution. Intuitively, PA layers aggregate the information from
all non-neighbor nodes to the center node. As such, it augments the
propagation paths for sparse graphs. An illustration of the PA layer
on group-to-user propagation is in Figure 3. The dash triangles
represent those unconnected groups of the target user. We assign
them the user-group attention weights as in the solid lines. PA
layer constructs additional context for the target user by exploring
non-neighbor groups. Hence, we have additional user-to-group
information as follows:

a𝑔→𝑢 =
∑︁

𝑔∈G 𝛼𝑔𝑢e
(𝑢)
𝑔 , (5)

where a𝑔→𝑢 denotes the addition information propagated to the
target user from all groups. The 𝛼𝑔𝑢 is the attention weight from
group 𝑔 to user 𝑢. And e(𝑢)𝑔 represents the user partition for group
personalized embedding e𝑔 . Analogously, we also have additional
user-to-item information as follows:

a𝑖→𝑢 =
∑︁

𝑖∈I 𝛼𝑖𝑢e
(𝑢)
𝑖

, (6)

where 𝛼𝑖𝑢 is the attention weight from item 𝑖 to user 𝑢. And e(𝑢)
𝑖

represents the user partition for item personalized embedding e𝑖 .
However, it is problematic if we directly learn these pair-wise at-

tention weights. For example, the attention weights between users
and groups 𝛼𝑔𝑢 increase the parameter complexity by O(|G|× |U|),
which is rather large and unable to scale. Inspired by matrix factor-
ization [23], we propose a novel factorized attention mechanism
to learn those attention weights. Basically, groups and items have
additional contextual embeddings as C𝑔 and C𝑖 , respectively, which

are utilized to infer corresponding attention weights. Next, we will
introduce the factorized attention mechanism. For simplicity, we
only explain how to infer group-user attention weight 𝛼𝑔𝑢 via con-
text embedding of groups. Item-user attention weight 𝛼𝑖𝑢 can be
derived in analogy.

We calculate the attention weight 𝛼𝑔𝑢 based on the relatedness
between this group 𝑔 and all the neighboring groups of the target
user 𝑢. The intuition is that users tend to be more interested in
groups similar to users’ previously participated groups. We formu-
late the calculation as follows:

𝛼𝑔𝑢 =

exp(𝜎 (∑
𝑚∈N (𝑔)

𝑢

R𝑚𝑔))∑
𝑘∈G exp(𝜎 (∑

𝑚∈N (𝑔)
𝑢

R𝑚𝑘 ))
, (7)

where R𝑚𝑔 denotes the relatedness between group𝑚 and group
𝑔 and group 𝑚 is from user participated groups N (𝑔)

𝑢 . We use
LeakyRelu as the nonlinear function 𝜎 (·). The group contextual
attention matrix R ∈ R |G |×|G | enables us to aggregate non-direct
group information thus augmenting the propagation. We calculate
elements R𝑚𝑔 ∈ R as follows:

R𝑚𝑔 =
exp(c𝑚 · c𝑔)∑

𝑘∈G exp(c𝑘 · c𝑔)
, (8)

where c𝑚 ∈ R𝑑 is the contextual embedding for group𝑚. In fact,
we calculate the relatedness matrix directly through the product
between the group contextual embeddings and its transpose as
follows:

R = softmax(C⊤
𝑔 C𝑔), (9)

where C𝑔 is the contextual embeddings for groups. As observed, we
decompose the calculation of pair-wise attention weights, i.e. the
𝛼𝑔𝑢 in Eq. (5), into the product of a 𝑑-rank matrix and its transpose.
Hence, it is a factorized attention mechanism. Our experiments also
demonstrate its better performance compared with existing graph
attention layers [27]. We present the factorized attention layer in
Figure 2. By stacking PA layer with the tripartite convolution layer,
we enhance the group and item partition embedding of user 𝑢 with
this additional information propagation as follows:

ê(𝑔)𝑢 = e(𝑔)𝑢 + 𝛽a𝑔→𝑢 , ê
(𝑖)
𝑢 = e(𝑖)𝑢 + 𝛽a𝑖→𝑢 , (10)

where 𝛽 ∈ [0, 1] is a scalar hyper-parameter to control the intensity
of PA. Note that when 𝛽 = 0, there is no augmentation for the
propagation. Then, we aggregate these enhanced embeddings in
tripartite graph convolution and substitute the e(𝑔)𝑢 and e(𝑖)𝑢 in
Eq. (2) with ê(𝑔)𝑢 and ê(𝑖)𝑢 , respectively. We present this PA layer
process in Figure 2.

4.4 Ranking Prediction and Optimization
The final prediction process is demonstrated in the right part of
Figure 2. After stacking 𝐿 layers, we obtain the user embedding e(𝐿)𝑢

and group embedding e(𝐿)𝑔 . The ranking score of the user-group
pair (𝑢,𝑔) is calculated by the inner product:

𝑦𝑢,𝑔 = e(𝐿)𝑢 · e(𝐿)𝑔 . (11)
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Then we employ the pairwise Bayesian Personalized Ranking (BPR)
loss [23] as our loss function:

L =
∑︁

(𝑢,𝑔,𝑔′) ∈D
− log𝜎 (𝑦𝑢,𝑔 − 𝑦𝑢,𝑔′) + 𝜆∥Θ∥22, (12)

where D = {(𝑢,𝑔, 𝑔′) |𝑔 ∈ G+
𝑢 , 𝑔

′ ∈ G\G+
𝑢 } is the training data

with positive interactions and random negative samples. Θ is all
trainable parameters in the framework, which is regularized by 𝜆.
Adam [20] is chosen as the optimizer.

5 EXPERIMENT
5.1 Experimental Setup
5.1.1 Datasets. We conduct on three real-world datasets:Mafengwo,
Weeplaces and Steam. Both Mafengwo and Weeplaces datasets con-
tain the user’s travel history with a location-based social network.
The history of creating or joining group travel for a user is recorded
in Mafengwo [1]. For Weeplaces, we construct group interactions
with venues by check-in time and users’ social networks in the
same way as GroupIM [24]. Both Mafengwo and Weeplaces have
limited users as shown in Table 2. Therefore, we release a new
dataset Steam which includes 11,099 users and 57, 654 group par-
ticipation records on Steam online game platform. The statistics
of three datasets is shown in Table 2. For Mafengwo, we randomly
select 70% of all groups joined by each user for training and valida-
tion and the remaining 30% for testing. For Weeplaces and Steam,
the split ratio is 80% for training and validation and 20% for the
testing set. Our implementation is available online4.

5.1.2 Baselines. To justify the effectiveness of our work, we com-
pare the following baselines:
• AGREE [1]. This model is designed to recommend items to
groups and users, which integrates the user, item and group
information. We adapt it to RGI task by endowing AGREE with
user-group pairwise BPR loss instead of the original item predic-
tion loss.

• MF-BPR [23]. This is the classical pair-wise matrix factorization
based recommendation model optimized by the BPR loss.

• ENMF [2]. This model based on a neural matrix factorization
architecture leverages mathematical optimization to train the
model efficiently without sampling data.

• NGCF [31]. This method is a variant of standard GCN [21] lever-
aging high-order connectivity in a user-item bipartite graph for
collaborative filtering.

• LightGCN [14]. This is a method based on NGCF with optimiza-
tion in training efficiency and generation ability by removing
feature transformation and nonlinear activation.

• SGL [33]. This work performs contrastive learning on LightGCN
to augment node representations for user-item recommendation.

Since those user-item recommendation baseline methods are not
designed for tripartite graphs, we deploy themwith only user-group
interactions such that they are adapted to RGI task.

5.1.3 Parameter Settings. We apply a grid search for hyperparam-
eters tuning in our model. We searched embedding size in {128,
256, 512, 1024, 2048}, learning rate in {0.0001, 0.0005, 0.001, 0.005,

4https://github.com/mdyfrank/CFAG

0.01}, regularization parameter 𝜆Θ in {0.001, 0.005, 0.01, 0.05, 0.1},
and the hyperparameter 𝜆𝛼 to control the strength of attention in
{0.01, 0.05, 0.1, 0.5, 1}. We set both personalized embeddings and
contextualized embeddings in the same embedding size and leave
the exploration of different embedding sizes in future work. A sim-
ple division over the dimension is used as partition layer, and direct
concatenation is used as merging layer. We use one convolutional
layer with batch size = 2048 for Mafengwo and Weeplaces, and two
convolutional layers with batch size = 8196 for the larger Steam
dataset. Early stopping is utilized in all experiments to cope with
the over-fitting problem.

5.1.4 Evaluation Metrics. We evaluate RGI task by ranking the
test groups with all non-interacted groups of users. And we adopt
Recall@{10, 20} and NDCG@{10, 20} as evaluation metrics.

5.2 Overall Performance Comparison
We present the overall comparison results in Table 1. The best re-
sults among all methods are in boldface, and the second best results
are underlined. We summarize the following key observations:
• The proposed CFAG method achieves the best results on all three
datasets. Especially, it outperforms all the baselinemethods signif-
icantly in Weeplaces dataset by more than 60%. We hypothesize
these large gains result from the abundant user-group interac-
tions as Table 1 shows. This demonstrates that CFAG is able to
well characterize the user-group interactions. The performance
gain in the other two datasets is from 8.53% to 25.67%, which
demonstrates the superiority of the proposed framework.

• The bipartite graph convolutional networks, such as LightGCN
and NGCF, are better than a simple matrix factorization method
MF-BPR on all the datasets, which indicates the benefits of using
graph propagation to learn embeddings. However, they are still
unable to incorporate the tripartite graph information, thus being
worse than CFAG. This observation justifies the necessity of
tripartite graph convolution for RGI task.

• Although AGREE integrates both the user-item and user-group
interaction information, its poor performance compared to other
baseline methods indicates that such methods designed for group-
item recommendation tasks cannot be directly applied to RGI
task. Compared with it, CFAG is specifically designed for RGI task
with tripartite graph convolution, and propagation augmentation
via factorized attention, which is a better framework.

5.3 Ablation study
In this section, we conduct two types of ablation study to jus-
tify the effectiveness of those modules in CFAG, which are parti-
tion/merging layers in tripartite graph convolution and PA layers.

5.3.1 Partition and Merging Layer Settings. We demonstrate the
performance of CFAG with different partition and merging layer
settings on the three datasets in Figure 4. CFAG employs a simple
division over the dimension as partition layer and a direct concate-
nation as merging layer. In addition, we investigate three other
settings: (P1) Fully-connected layer as partition layer; (M1) con-
catenation before a fully-connected layer as merging layer; and
(M2) concatenation after a fully-connected layer as merging layer.
We only show the result on NDCG since the pattern on Recall is
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Table 1: RGI performance comparison on three datasets.

Dataset Mafengwo Weeplaces Steam
Metric R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20
AGREE 0.0287 0.0495 0.0104 0.0157 0.0174 0.0322 0.0081 0.0119 0.0497 0.0683 0.0239 0.0283
MF-BPR 0.1930 0.2388 0.1185 0.1305 0.2349 0.2826 0.1479 0.1625 0.2034 0.2859 0.1138 0.1356
ENMF 0.3038 0.3568 0.1805 0.1959 0.2283 0.3260 0.1258 0.1577 0.2424 0.3153 0.1415 0.1605
NGCF 0.2012 0.2723 0.1102 0.1288 0.1742 0.2332 0.1068 0.1249 0.2356 0.3448 0.1286 0.1573
LightGCN 0.2531 0.3561 0.1385 0.1839 0.2585 0.3293 0.1479 0.1636 0.2388 0.3509 0.1294 0.1611
SGL 0.2586 0.3075 0.1454 0.1576 0.2650 0.3210 0.1563 0.1704 0.2221 0.3030 0.1230 0.1437
CFAG 0.3540 0.4484 0.1959 0.2184 0.4264 0.5323 0.2590 0.2790 0.2851 0.3856 0.1599 0.1824
Improvement 16.52% 25.67% 8.53% 11.49% 60.87% 61.65% 65.71% 63.73% 17.62% 9.88% 13.00% 13.22%

Table 2: The statistics of datasets.

Dataset Mafengwo Weeplaces Steam
# users 1,269 1,501 11,099
# groups 972 4,651 1,085
# items 999 6,406 2,351
# user-group edges 5,574 12,258 57,654
# user-item edges 8,676 43,942 444,776
# group-item edges 2,540 6,033 22,318
Avg. # groups/user 4.39 8.17 5.19
Avg. # items/user 6.84 29.28 40.07
Avg. # items/group 2.61 1.29 20.57

the same. We observe that CFAG consistently performs the best on
three datasets. This justifies the superiority of CFAG with a simple
division as partition layer and a direct concatenation as merging
layer performs best among all the settings. The reason is that those
fully connected layers increase the complexity of the model with
redundant parameters and also degrade model effectiveness.

P1 M1 M2 CFAG0.0

0.1

0.2

0.3

ND
CG

@
10

0.1196 0.1020 0.1034

0.1959

Mafengwo

P1 M1 M2 CFAG0.0

0.1

0.2

0.3

ND
CG

@
10

0.1018
0.0769 0.0879

0.2590
Weeplaces

P1 M1 M2 CFAG0.0

0.1

0.2

0.3

ND
CG

@
10

0.1209 0.1137 0.1168
0.1599

Steam

Figure 4: Performance of CFAG w.r.t. partition/merging
layer settings.

5.3.2 PA layer variants. Another ablation study is further made to
investigate layers. We design four variants of PA layers. 1) w/o PA
is without using PA layer in CFAG, which only employs tripartite
graph convolution layer. 2) w/o group is the PA layers without the
user-to-group propagation augmentation. 3) w/o item is the PA
layers without the item-to-user propagation augmentation. And 4)
GAT att. is changing the factorized attention mechanism to GAT
attention layers in [27]. We demonstrate the results in Table 3.

From the results, we can observe that without the PA layer, the
performance is the worst on both Weeplaces and Steam datasets.
This verifies the effectiveness of PA layers. Moreover, if we use only
group-to-user or item-to-user PA, the performance is improved

Table 3: Ablation study on PA layers.

Dataset Mafengwo Weeplaces Steam
Metric R@10 N@10 R@10 N@10 R@10 N@10
w/o PA 0.3338 0.1881 0.4065 0.2419 0.2620 0.1389
w/o item 0.3379 0.1913 0.4116 0.2438 0.2838 0.1560
w/o group 0.3381 0.1899 0.4198 0.2504 0.2835 0.1538
GAT att. 0.3190 0.1747 0.4172 0.2484 0.2800 0.1520
CFAG 0.3540 0.1959 0.4264 0.2590 0.2851 0.1599

compared with w/o PA, which indicates the benefits of PA layers.
However, w/o item and w/o group PA are both worse than CFAG
which uses both PA. This also justifies the necessity of augmenting
both user-item interactions and user-group participation. Addition-
ally, we observe that using the GAT layer to learn attention weights
is not able to improve the performance. GAT att. even yields the
worst performance on Mafengwo dataset. We argue that GAT layer
introduces redundant parameters to learn the attention weights.
Therefore, we believe that the proposed factorized attention mech-
anism is a better way to infer the attention weights for PA layers.

5.4 Contextual Embedding Analysis
As aforementioned, contextual embeddings characterize the simi-
larity of groups and items, and thus we can construct augmented
propagation paths. To verify this, we conduct analyses of those
learned contextual embeddings of CFAG from two perspectives.

Firstly, we investigate the distribution of all the values in the relat-
edness matrix R. Since values in it are too small, we instead present
the pair-wise value before passing to softmax, i.e., the c𝑚 · c𝑔 . Also,
due to the space limitation, we only present the results regarding
group contextual embeddings. Item contextual embeddings have
similar patterns. The distributions on three datasets are present
in Figure 5. Two obvious peaks appear on all datasets. The first
peak centers at 0 and is much higher than the second peak, which
suggests that most of the groups are not related based on contex-
tual embedding. The second peak centers at a distinct value. The
second peak is actually those correlated groups and those simi-
lar groups constructs augmented propagation paths from groups
to users. Therefore, we conclude that the learned contextual em-
bedding is able to reveal the similarity of groups and benefits the
propagation augmentations.

Secondly, we retrieve all pairs of groups. Then, we calculate their
relatedness and corresponding common user ratio. The ratio for
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Figure 5: Distribution of the dot-product values on group
contextualized embeddings, i.e., 𝑐𝑚 · 𝑐𝑔.

each group pair (𝑔𝑎, 𝑔𝑏 ) is computed as follows:

𝑟𝑎𝑏 =
|N (𝑢)

𝑔𝑎 ∩ N (𝑢)
𝑔𝑏

|

|N (𝑢)
𝑔𝑎 ∪ N (𝑢)

𝑔𝑏
|
, (13)

where N (𝑢)
𝑔𝑎 and N (𝑢)

𝑔𝑏
is the set of users in group 𝑔𝑎 and 𝑔𝑏 , re-

spectively. Hence, the nominator in Eq.(13) denotes the common
users for group pair (𝑔𝑎, 𝑔𝑏 ) while the denominator denotes the
total number of users in this pair. For a simple illustration purpose,
we sort all group pairs w.r.t. the relatedness scores and split them
into 10 equal size subsets, and represent each subset as the aver-
age relatedness scores. Then, we calculate the average common
user ratio in each subset. The scatter plots between relatedness and
common user ratio sharing ratio on three datasets are shown in
Figure 6. We also draw a regression line and compute the Pearson
correlation coefficient 𝑝 for each dataset.
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Figure 6: Commonuser ratiow.r.t. relatedness of group pairs
based on contextual embeddings.

We have the following observations: Firstly, an overall tendency
is that the common user ratio increases with the growing of relat-
edness, especially in Mafengwo and Steam datasets. This tendency
indicates that two groups sharing more common members can
have higher relatedness based on contextual embeddings, which
justifies the efficacy of learned contextual embeddings. Secondly,
the highest 𝑝 value in the largest Steam dataset implies that the
propagation augmentation ability of contextual embeddings can be
more effective on larger datasets.

5.5 Cold-start Group Recommendation
As aforementioned, the cold-start issue in RGI is severe. Hence,
we conduct a detailed analysis regarding the ability of CFAG to
tackle cold-start group recommendation. We randomly remove
some user-group edges for each user in the training set such that
the number of neighbor groups of each user is no greater than
a threshold 𝑘 . For comparison, we choose ENMF, LightGCN, and
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Figure 7: Cold-start performance of different methods.

SGL as the three baseline models, and perform the experiments
with threshold𝑘 ∈ {1, 2, 3, 4}. The threshold indicates the maximum
number of groups per user. The results are in Figure 7.We report the
NDCG performance with respect to different thresholds as the solid
line and the number of user-group interactions in the background
histograms. We observe that CFAG significantly outperforms other
baselines. The reasons are twofold. First, CFAG can leverage both
the item and group interactions to learn node embeddings. Though
few group participation of users, item interactions complement the
cold-start issue. The other reason is that the PA layers in CFAG
resolve the cold-start issue by discovering potential unconnected
neighbors, thus being able to improve the cold-start performance.

Additionally, we observe that on the large-scale Steam datasets,
CFAG even performs better when 𝑘 = 1 than on 𝑘 = 2. We hy-
pothesize that when the number of groups per user is few, CFAG
can well characterize the group interests of users from their item
interactions. Therefore, it verifies the CFAG is a better framework
to comprehensively integrate item and group information for users
and can successfully complete the RGI task.

6 CONCLUSION
In this paper, we formulate the Ranking-based Group Identifica-
tion (RGI) problem, with the goal of recommending new groups
to a target user based on the user’s group and item interactions.
In RGI problem, it is challenging to effectively harness both item
interactions and group participation on a social tripartite graph.
To address these challenges, we propose a novel framework CFAG,
which is able to (i) effectively aggregate information from different
types of neighborhoods via the tripartite graph convolution, and
(ii) augment the propagation paths to resolve the data sparsity is-
sue via PA layers. We conduct extensive experiments and detailed
analyses on three datasets to verify the effectiveness of CFAG. In
the future, we may explore how to select the optimal neighbors
for aggregation and different aggregator layers. As such, we can
improve the functionality of tripartite graph convolution layers.
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