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ABSTRACT
Because of the large number of online games available nowadays,

online game recommender systems are necessary for users and

online game platforms. The former can discover more potential

online games of their interests, and the latter can attract users to

dwell longer in the platform. This paper investigates the charac-

teristics of user behaviors with respect to the online games on the

Steam platform. Based on the observations, we argue that a satis-

fying recommender system for online games is able to character-

ize: personalization, game contextualization and social connection.

However, simultaneously solving all is rather challenging for game

recommendation. Firstly, personalization for game recommenda-

tion requires the incorporation of the dwelling time of engaged

games, which are ignored in existing methods. Secondly, game

contextualization should reflect the complex and high-order prop-

erties of those relations. Last but not least, it is problematic to use

social connections directly for game recommendations due to the

massive noise within social connections. To this end, we propose

a Social-aware Contextualized Graph Neural Recommender Sys-

tem (SCGRec), which harnesses three perspectives to improve game

recommendation. We conduct a comprehensive analysis of users’

online game behaviors, which motivates the necessity of handling

those three characteristics in the online game recommendation.

CCS CONCEPTS
• Information systems→Personalization;Recommender sys-
tems; Collaborative filtering.
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1 INTRODUCTION
Recent years have witnessed the rapid growth of the video game

industry. According to statistics
1
, the global video game market

value in 2020 is $155.89 billion and is expected to reach $268.81

billion in 2025. Along with the rising of the market, values are

massive new releasing video games. It is reported that on Steam

platform
2
, 10, 263 new games are released in 2020 while the number

was 276 in 2010
3
. Due to the time limitation of users in playing

video games, a game recommender system is necessary to assist

users to discover new games of their potential interests. In this way,

we can improve users’ experience in-game engagement and can

thus attract players to stay longer within the platform.

Though designing game recommender systems attracts recent

research attentions [1, 3, 6], they are still under-explored. A satisfy-

ing game recommender system should be able to characterize the

following three perspectives: 1) personalization, modelling the

game engagement interests of users, 2) game contextualization,
revealing complex relations among games and 3) social connec-
tion, interpreting the game engagement of users as a type of social

activities. Though these factors have already been investigated

in other recommendation scenarios [8–10, 18–20, 42, 55], directly

adopting existing methods from other domains is problematic due

to the unique challenges in tackling game recommendations.

Firstly, the personalization of users should reveal their interests

in games, which requires the awareness of game engagements. A

comprehensive game engagements should incorporate: 1) which
games users have engaged in and 2) how long users dwell in those

games [50]. The former is widely tackled as the collaborative sig-

nals [5, 14] between users and games, while the latter is seldom

studied. On one hand, dwelling time reflects the loyalty of users

to games, which should be of high vitality in revealing the users’

preference. On the other hand, because of the design of games (e.g.,

1
https://www.statista.com/statistics/292056/video-game-market-value-worldwide/

2
https://store.steampowered.com/

3
https://www.statista.com/statistics/552623/number-games-released-steam/
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RPG v.s. MOBA), the dwelling time of different games may not be

comparable [34], which also leads to the difficulty.

Moreover, game contextualization is to comprehend the related-

ness among games. Contextually similar games are recommended

to users based on their historical game engagements. Existing meth-

ods [5, 6] construct the context of games by formatting that side

information as features, e.g., the developer and price of a game will

be processed as one-hot vector and float number features, respec-

tively. This enables the recommender system to harness the side

information of games rather than solely relying on the collabora-

tive signals. Nevertheless, digesting context as features is unable to

characterize complex and high-order relations between games. For

example, if game A has the same developer as game B, and game B is

usually co-purchased with game C according to users transactions,

game A and game C should also be highly related when conducting

recommendations. However, the complex co-purchase relation and

the transitivity of relations are both neglected by feature-based

methods. Hence, we should explicitly tackle the relations between

games for contextualization.

Last but not least, social connections are rather crucial in game

recommendations because many online video game engagements

are not isolated individual behaviors but social activities. In this

sense, discovering potential interests of users from their friends

enables the recommender system to identify the game engagements

of users from a social perspective. Nevertheless, the challenge is that

due to social inconsistency [49], users’ friends may be of different

impacts concerning distinct games. For example, users usually play

MOBA games Dota 24 with friends in a team, whereas single-player

RPG games Portal5 are played individually. As a result, directly

recommending those games equally based on the engagements of

friends [28] yields sub-optimal performance. Therefore, we should

infer the impacts of friends on users.

To this end, we propose a novel game recommendation frame-

work named SCGRec. SCGRec can be split into three parts, time-

aware context aggregation, context-aware social aggregation and

personalized predictor. User’s contextual embedding is learned in

time-aware context aggregation module. It aggregates informa-

tion from user’s engaged games with consideration on dwelling

time. User’s social embedding is obtained from context-aware social

aggregation module. This module firstly learns attention weight

of neighbors from user’s contextual embedding, and obtains so-

cial embedding by weighted sum of neighbors’ personalized em-

bedding. In personalized predictor, contextual embedding and so-

cial embedding are fused with user’s personalized embedding by

weighted sum. The prediction score is obtained by a dot prod-

uct of aggregated user embedding and personalized item embed-

ding. The code and data for experiment is available online at https:

//github.com/YangLiangwei/game-recommendation.

The contributions of this paper are as follows:

• We conduct comprehensive data analyses of the game engage-

ment based on a large-scale Steam dataset containing nearly

billions of interactions. We investigate both the statistical char-

acteristics and underlying patterns of the game engagements.

4
https://store.steampowered.com/app/570/Dota_2/

5
https://store.steampowered.com/app/400/Portal/

• We propose a unified framework to incorporate personalization,

game contextualization and social connections, which improves

the game recommendation performance compared with existing

methods, especially those state-of-the-art graph neural networks.

• We conduct extensive ablation studies to demonstrate the effec-

tiveness of leveraging all those three perspectives.

2 RELATEDWORK
2.1 Game Recommendation
Designing game recommender systems is not a academic focus

until recent years [1, 3, 6] due to the rapid developments of game

industries [24]. We categorize existing works as: 1) the collaborative

filtering (CF)-based methods, 2) the content-based methods, and 3)

the hybrid methods.

Firstly, collaborative filtering (CF)-based methods [35, 56] har-

ness the interactions between users and games and assume users

with similar behaviors are of similar game preference. R. Sifa etc. [33,

34], are pioneering researchers solving game recommendation prob-

lems via archetypal, which factorizes the interaction matrix into the

linear combination of archetypes. GAMBIT [1] investigates both

the item-based and user-based CF methods for game recommenda-

tion. G. Cheuque etc. [5] demonstrate the game recommendation

performance on Steam with a simple CF-based method via the ALS

algorithm [36]. CF-based methods are effective in reflecting the

interactive signals between users and games.

Secondly, content-based methods [27] leverage the profile of

users and the description of games and predict their interaction

likelihood. B. Paul etc. [3] predict the next game that users will

interact by fitting their time-series patterns. J. Kim etc. [15] conduct

the ranking-based recommendation by sequentially considering

user historical behaviors.

Finally, hybrid methods characterize both the CF signals and

content-based information for the recommendation. G. Cheuque

etc. [5] investigate the performance of FM [29] and DeepFM [12]

towards game recommendation by leveraging both the interac-

tions and feature information of users and games. J. Pérez-Marcos

etc. [28] model feature-based relations between games and then

apply the CF for the recommendation. They also firstly study the

possibility of using social networks over users to improve per-

formance. Hybrid methods are of both flexibility and adaptability

regarding the game recommendation task. Our proposed model is

also a hybrid recommender system.

2.2 Graph-based Recommendation
We review some graph-based recommendationmethods as we adopt

the graph neural network (GNN) [38, 43, 46, 54] for the game rec-

ommendation. Graph-based recommendation methods model user-

item interactions as a bipartite graph [2, 14, 23, 32, 51, 53], with

potential extensions to the heterogeneous graph with additional

user-user social graph [25, 49] and item knowledge graph [39, 40].

Graph-based methods mostly adopt GNN for learning nodes (users

and items) embeddings. GNNs aggregate information from neigh-

bors and can incorporate first-order and even higher-order infor-

mation if multiple layers are stacked. Such unique characteristics

allow GNNs to effectively capture high-order collaborative signals,
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Table 1: Number of different nodes in Raw Data

users games genres engagements social connections

3.8M 4,079 22 384.3M 392.7M

which are crucial signals for learning user and item embeddings in

recommendation [14, 41].

Heterogeneous GNNs [20, 40] are applied for recommendation

for the combination of more side information such as knowledge

graph and social network. Knowledge-aware GNNs recommen-

dation [40] increasingly attracts attentions, intending to improve

recommendation by connecting items with knowledge entities by

various relationships. KGAT [40] introduces a unified collaborative

knowledge graph from the user-item interaction graph and knowl-

edge graph and proposes a GNN for learning both recommendation

and knowledge tasks. KGNN-LS [39] introduces label smoothing

regularization on knowledge graphs to further enhance the item

embeddings learning.

In addition to knowledge graph, GNNs also enables themodelling

of user-user social graph as side information in recommendation.

GraphRec [7] learns graph attention network to assign different

attention weights to different social neighbors. DiffNet [44] models

information diffusion process [4] in social graph to enlarge user’s

influence scope [11]. DANSER [45] performs dual graph attention

networks on social and user-item interaction networks separately

and fuses the learned embedding by a policy-based fusion layer.

ConsisRec [49] dynamically samples informative neighbors and per-

forms aggregation considering different relation types. FeSoG [21]

proposes a GNN-based social recommendation system under graph

federated learning setting [13]. Our work considers the social in-

formation as the social context via attention mechanism.

Our work aims to enhance game recommendation with addi-

tional contextual information. Different from previous works, SC-

GRec is flexible enough to integrate both time-aware contextual

information and social connection information. Instead of using

explicit message passing as existing works, SCGRec models those

side information as contextual embeddings. As such, we can im-

prove the recommendation performance by leveraging both game

engagement information and additional contextual information.

3 DATA ANALYSIS
In this section, we first present an overview of the data statistics,

then dive deep into the data characteristics by visualizing data

distributions from personalization, game contextualization, and

social connections perspectives.

3.1 Overview of Data Statistics
The raw data

6
is crawled by Mark et al. [26] through Steam Web

API
7
. Players and games form a highly unbalanced bipartite graph.

Millions of players can play each game while each player only plays

a small number of games, which makes the aggregated information

highly unbalanced on the two sides. The following analysis is based

on all the collected data.

6
https://steam.internet.byu.edu/

7
https://developer.valvesoftware.com/wiki/Steam_Web_API

3.2 Personalization
User engagement activities uncover their personalized interests in

online video game platforms. We demonstrate the necessity and

challenges of introducing personalization for game recommenda-

tion by investigating distributions of user engagements in both the

numbers of engaging games and dwelling time. We visualize the

user distributions with respect to the number of engaging games

in Figure 1a and dwelling time in Figure 1b. From Figure 1a, we

can observe the long-tail distribution on the number of engaging

games. We also show the number of users with respect to different

number of interacted games in Table 5. It shows a large number of

users only interact with limited number of games. Note that, users’

personalized information is not restricted to historical game inter-

actions. Users’ social friends and dowelling time of each game all

count as personalized information. SCGRec achieves personalized

recommendation by considering all such information. In addition to

the number of engaging games, we plot the user count distribution

over different dwelling times in Figure 1b. Dwelling time uncovers

how much time users engage in games and is also a crucial signal

of user interests. To illustrate this, we visualize the user count dis-

tribution on log-scaled dwelling time in Figure 1b. The dwelling

time distribution almost follows the normal distribution, which is

different from the long-tail distribution of the number of engaging

games. It reveals different behavioral patterns on whether and how

long to engage in a game, which indicates that predictive modelings

on these two signals demand distinct mechanisms.
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Figure 1: User Game Engagement Distributions

3.3 Game Contextualization
Game contextualization is to comprehend the relations between

games, which can further interpret the recommendation [47]. We in-

vestigate the game contextualization from both the genre level and

the game level. Genre-level contextualization is to analyze whether

games from different genres are co-played by users. We select the

five most popular genres. We calculate the probability that condi-

tioned users engaged in one genre, how likely those users also play

those other genres. The relations between genres are illustrated in

Figure 2. We observe that the conditional probability from different

genres are diverse, which indicates the correlations between genres

are distinct. Moreover, we observe that users playing simulation

games are reluctant to play other game types because of the low

probability in other genres.

The second investigation is designed for game-level contextual-

ization. Here, we present the co-purchase relation between games.
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Figure 2: Genre Conditional Probability P(A|B)Visualization
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Figure 3: Game-Game Co-Purchase

Precisely, the co-purchasing relation score ci j between game i and
j is calculated as follows:

ci j =
# of users engaged in both i and j

# of users engaged in i + # of users engaged in j
. (1)

High relation scores represent that two games are played by the

larger group of shared users, which implies their high relatedness.

We present the results for part of the games in Figure 3. We can

observe that some game pairs have a high correlation, e.g. the
Counter-Strike and Counter-Strike: Condition Zero. This will be

a strong signal for game contextualization. We also present the

co-dwelling relation scores between those games in the appendix.

3.4 Social Connections
Social activities also influence online video game engagements. To

verify this, we conduct two types of data analyses over the game

engagements of users and their friends. The first analysis is to

demonstrate whether game engagements are social activities. To

achieve this, we select the top-10 popular games and calculate the

Pearson correlation coefficient between the dwelling time of

users and the average dwelling time of their friends. The results are

in Table 2. For comparison, we randomly select the same number

of users with no friendships with the associated users and calcu-

late their Pearson correlation coefficient. Observations are twofold.

Firstly, game engagements are influenced by social connections

because the correlation scores between friends are higher than

between non-friends on all the games. Secondly, the intensity of

social impacts is different across games. For example, the MOBA

game Dota 2 has a higher correlation score compared with the

single-player game Portal. We also include the Pearson correla-

tion coefficient concerning top-5 genres, and distribution of friend

number in the appendix.

Table 2: Pearson correlation coefficient w.r.t. games.

Game user-friend user-random

Counter-Strike 0.5816 0.1846

Dota 2 0.5422 0.1649

Team Fortress Classic 0.4705 0.0678

Team Fortress 2 0.4659 0.1489

Day of Defeat 0.4325 0.0609

Left 4 Dead 2 0.4304 0.0917

Ricochet 0.3084 0.0246

Deathmatch Classic 0.2376 0.0142

Half-Life 0.2264 0.0217

Portal 0.1216 0.0254

The second analysis is to investigate whether friends are of simi-

lar game preference. To calculate this similarity score, we first define

the user game preference vector as the genre-wise engagement dis-

tribution [t1, t2, . . . , tk ], where each entry tk denotes the log-scaled

dwelling time in genre k . Due to the power-law distribution of

users in genres, we choose the top-5 genres. Then, the preference

similarity is calculated as the cosine similarity between users, com-

puted over all social connections. Furthermore, for comparison, we

also randomly sample the same number of non-friendship links be-

tween users. The histogram of the similarity score is distributed in

Figure 4. We can observe that in the range of [0.9, 1.0], the number

of friendship connections is more than non-friendship connections,

suggesting that friends are more likely to have a similar preference.

4 PRELIMINARIES
In this section, we present several basic definitions before formu-

lating the problem of game recommendation.

Definition 4.1. (Game Engagement). Given the game set I,
the game engagement of a user u is defined as a set of (game,time)
pairs as Eu = {(i1, t1), (i2, t2), . . . , (ik , tk )}, where i1, i2, . . . , ik ∈ I

and t1, t2, . . . , tk ≥ 0. k is the total number of engaged games of u
and tk denotes the dwelling time in game ik .

The personalization requires the game engagements of all users

U, which forms a bipartite attributed graph. The nodes are users

and games, and the edges are their interactions with dwelling time.

Dwelling time is calculated as how long the user has played a game,

reflecting the intensity of the game engagement.
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intervals of game genres engagement cosine similarity.

Besides the interactions between users and games, we also lever-

age the context information for games, e.g., the developer of games.

Moreover, instead of directly processing context information, we

form relations between games via shared context. In other words,

if two games share the same context, we construct a link between

them. In this way, we define the game context graph as follows:

Definition 4.2. (Game Context Graph). Given the game set I,
the game context graph for context c is defined as G(c)

i = {I, Ec },
where I is the node set and Ec denotes edges. For two games i, j ∈ I,
(i, j) ∈ Ec if they share context c .

The definition of context is rather flexible. Context shows some

relevance between games. It can be the game attributes, co-engaged

relations and game mechanisms [22]. Each relevance can be rep-

resented as one kind of edge in the game context graph. Those

contexts constitute a multiple relation game context graph as Gi =

{G
(c)
i }|Cc=1, where C is the total number of contexts.

Moreover, users are connected by their friendship links, with

which we can define the social graph of users:

Definition 4.3. (Social Graph). Given usersU, the social graph
is defined as Gu = {U,S}, where S denotes edges. For two users
u,v ∈ U, (u,v) ∈ S if they are friends.

Figure 5 shows the graph structure. Game context graph and

social graph act like side information to game engagement graph.

Thereafter, we can formulate game recommendations as follows:

Definition 4.4. (Game Recommendation). Supposing a set
of users U and games I, given the game engagement of all users
{Eu }|u ∈U , the game context graph Gi and the social graph Gu , we
should recommend a user u ∈ U a ranking list of games that u has
no engagements in.

5 PROPOSED MODEL
In this section, we introduce SCGRec. It has four crucial compo-

nents: game context graph neural network, time-aware context

aggregation, context-aware social aggregation, and the personal-

ized predictor. The proposed model is shown in Figure 6.

𝑢𝑢1𝑖𝑖2

𝑢𝑢2

𝑖𝑖3

𝑢𝑢3
𝑖𝑖4

𝑖𝑖1

𝑖𝑖5
𝑢𝑢4

User
Game

Game context graph Game engagement graph Social graph

Figure 5: Graph structure of Steam data

5.1 Game context graph neural network
Game context graph Gi is built to propagate information among

similar games. In this dataset, we build Gi by 5 game relations

including 3 feature-based relations and 2 behavior-based relations.

Feature-based relations include co-genre, co-developer, and co-

publisher based on different game features. For example, edges in

co-developer relation indicate the same game developer develops

the connected games. Behavior-based relations are constructed

from users’ behavior information. Co-purchase relation measures

whether two games are likely to be purchased together. The co-

purchase score between game i and j is calculated by Equation 1.

Then the edges with a co-purchase score larger than threshold τp
remain in the co-purchase graph. The co-dwelling relation between

two games reflects whether two games can attract users to play a

similar period length. The co-dwelling score is computed by:

Co-dwelling = e−
|ti −tj |
T , (2)

where ti and tj are the average dwelling time for users co-purchased

game i and game j, respectively. T is a constant to normalize the

time. Then the edges with co-dwelling scores larger than threshold

τt are kept in the co-dwelling graph.

As shown in Figure 7, one graph convolution is performed for

each relation type. Then the game contextual embedding eci ∈ Rd

is obtained after a pooling layer to aggregate information from all

relation types. Specifically, we use mean aggregation as:

eci =
1

|C |

∑
c ∈C

∑
j ∈Nc (i)

1

mc
i, j

Wchj + bc , (3)

whereNc (i) is the neighbor set of node i w.r.t. relation c . hj denotes
the hidden feature vector of node j .mc

i, j =
√
|Nc (i)|

√
|Nc (i)| is the

normalization factor.Wc and bc are graph convolution parameters.

5.2 Time-aware context aggregation
Dwelling time is a critical information for game recommendation,

which signifies user engagements. However, time information can

not be directly used because the dwelling time of different games

are incomparable. Instead, we calculate the user dwelling time

percentile to measure user’s engagement in each game.

User’s contextual embedding ecu ∈ Rd is obtained from game

contextual embedding eci with the consideration of user engage-

ment Eu . For u, the time-aware context aggregation is calculated
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(b) Time-aware aggregation
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by:

ec
agg
=

∑
(i,t )∈Eu

γi,t eci , (4)

where γi,t is the time-aware weight, which is calculated as follows:

γi,t =
percentile(i, t)∑

(i′,t ′)∈Eu percentile(i ′, t ′)
, (5)

where percentile(i, t) returns time t ’s percentile in all dwelling time

occurred in game i .
Then the contextual embedding of user u is calculated by:

ecu =W(epu ⊕ ec
agg

), (6)

whereW ∈ Rd×2d is a linear projection matrix, ⊕ is the concatena-

tion operator and epu is u’s personalized embedding.

5.3 Context-aware social aggregation
In Table 2, we observe higher correlation between friends than

random users, which implies that social neighbors are beneficial for

inferring users’ interests. Since contextual embeddings of users con-

tain the game engagement information, the aggregation of context

embedding from social connection perspectives can help explore

more similar neighbors. We use context attention to obtain the

attention weight for social aggregation:

αui = softmax
uj∈N(u)(eui ) =

exp

(
eui

)∑
uj ∈N(u) exp

(
euj

) , (7)

eui = LeakyReLU

(
a⊤(Wecu ⊕ Wecui )

)
, (8)

where W ∈ Rd×d and a ∈ R2d are parameters for calculating

context attention weights.N(u) is the neighbor set of node u, ecu is

nodeu’s contextual embedding, and ⊕ is the concatenation operator.

We perform weighted aggregation on personalized embedding as:

ep
agg
=

∑
ui ∈N(u)

αui e
p
ui , (9)

then the social embedding of user u is calculated as:

esu =W(epu ⊕ ep
agg

), (10)

whereW ∈ Rd×2d is a linear transformation, ⊕ is the concatenation

operator and epu is u’s personalized embedding.

5.4 Personalized Predictor
For user u, we have context embedding ecu from time-aware con-

text aggregation, social embedding esu from context-aware social

aggregation and personalized embedding epu . To simultaneously

incorporating all these information, we assign different weights

and sum them to obtain the final embedding of users as follows:

eu = wcontextecu +wsocial
esu +wself

epu , (11)

where wcontext, wsocial
and w

self
are scalar hyper-parameters to

decide the importance of the corresponding information. Hereafter,

the final rating score is calculated by the dot-product between user

embedding eu and game personalized embedding epi as follows:

ru,i = eu · epi . (12)

We adopt the Bayesian Personalized Ranking (BPR) loss [30] for

optimizating all trainable parameters, which includes the embed-

dings and convolution weights. Loss function is defined as:

L = −
∑

(u,i)∈Eu , j ∈I\Eu

logσ (ru,i − ru, j ) + λ | |Θ| |
2

2
, (13)

where j denotes the negative games sampled from I \ Eu that user

u has no interactions with, λ is the hyper-parameter, andΘ includes

all trainable parameters.
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6 EXPERIMENTS
6.1 Experimental Setup
6.1.1 Steam Data Set. Due to the limitation of computational re-

sources, we preprocess the raw data by two steps to make it feasible

for training and evaluation. Firstly, we filter out the users with less

than 5 game interactions or play games for less than 60 minutes.

Then 30% of the users are randomly sampled to form the data set.

The details of the filtered dataset are shown in Table 3. Given this

dataset, We then build a validation set and a test set by randomly

sampled 50, 000 players. The validation set and test set are formed

by 10% game interactions of these selected players.

This processed data is publicly released
8
for future reference.

Table 3: Statistics of filtered Steam Data

# Players 3,908,744

# Games 2,707

# Publishers 689

# Developers 1,170

# Interactions 95,441,434

# Social Connections 10,625,806

6.1.2 Baselines. To evaluate the intrinsic characteristics of game

recommendation, we compare our proposed model with several

baseline models, including Popularity (time), Popularity (count),

LightGCN [14], RGCN [31], GIN [48], PinSAGE [51] and GAT [37].

Detailed description and comparison are given in the appendix.

6.1.3 Implementation Details. We implement SCGRec in Pytorch

and deep graph library (DGL)
9
, an open-source framework for

graph neural networks. Hyper-parameters include embedding size,

learning rate, batch size, social embedding aggregation weight

Wsocial and contextural embedding aggregation weightWcontext .

The personalized embedding aggregationweight is set to 1−Wsocial−

Wcontext . The tuning range and best hyper-parameters setting

is given in the appendix. Adam [16] is adopted as the optimizer.

BPR loss is adopted for optimization with random negative sample.

Early stop strategy is adopted to avoid over-fitting. The training is

stopped if the model’s performance does not increase in successive

10 epochs. During testing, we rank all the potential games from

those 2,702 games for each user based on their interaction scores.

Then we calculate the metrics including NDCG@K , Recall@K , Hit
Ratio@K , and Precision@K , where K ranges in {5, 10, 20}

6.2 Performance Evaluation
Experiment results are shown in Table 4. from the results. We have

the following observations:

• SCGRec significantly outperforms the state-of-the-art GNN mod-

els. In the top 5 recommendation, SCGRec outperforms the second-

best model by more than 5% on NDCG, Recall, and Precision. By

tackling the personalization, social connection, and game inter-

pretation information accordingly, SCGRec can effectively fuse

8
https://drive.google.com/file/d/1F9kr_YWimBtexJEH-zkDzCOwl1q7GmFp/view?

usp=sharing

9
https://www.dgl.ai/

all side information to enhance game recommendation. When the

recommendation list gradually becomes longer, the improvement

of SCGRec becomes more and more limited on all the metrics.

For example, the improvement on Recall@5 is 5.96% while on

Recall@20 is only 2.66%. It shows the difficulty of improving on

a long recommendation list.

• The personalized recommendation is much better than the non-

personalized recommendation. Popularity (time) and Popularity

(count) are non-personalized recommendation methods. They

generate the same recommendation list for all users based on

game popularity. The worse performance of popularity-based

methods shows the importance of personalized recommendations.

Popularity (count) performs nearly twice as well as popularity

(time). It shows that directly utilizing dwelling time length is not

informative. The same dwelling time reflects different engage-

ments on different games. Thus, dwelling time information is

modeled as user engagement percentile in SCGRec.

• Nodes’ self-information is important in GNN aggregation. Light-

GCN and RGCN have much lower performance than other GNN

based models. Compared to other GNN models, the main differ-

ence between LightGCN and RGCN is that they directly aggregate

all the neighbor information without considering the relative im-

portance of self-information. PinSage firstly aggregates neighbor

embedding and self-embedding, then it fuses the information by

a learnable linear layer. GIN also focuses more on self-embedding.

It adds the aggregated neighbor embedding as side information.

GAT learns attention weight for each neighbor with consider-

ation on nodes’ self-embedding. In SCGRec, we explicitly add

nodes’ self-information controlled by hyper-parameterw
self

.

• Side information such as social links and game context graphs

are helpful to improve recommendation performance. Compared

with LightGCN, RGCN builds social link and game context in-

formation as different relation types and aggregates information

from all relations. LightGCN only aggregates on a user-game

bipartite graph. The improvement of RGCN over LightGCN can

be explained by utilizing more side information. SCGRec explic-

itly models game-side information as contextual embedding by

time-aware aggregation. Social link information is also modeled

as social embedding by context-aware social aggregation module.

6.3 Ablation Study
In this section, we perform an ablation study on SCGRec. We build

three variant of SCGRec by removing part of its modules: 1) variant

A is built by removing social embedding; 2) variant B removes those

contextual embeddings; and 3) variant C is constructed by remov-

ing both social and contextual information. Experimental results

are demonstrated in Figure 8. Compared with all three variants,

SCGRec performs the best on all metrics. We observe that consid-

ering both social embedding and contextual embedding achieves

the best performance. Moreover, variant A performs better than

variant B, which indicates that removing contextual embedding has

more negative effects on SCGRec. Hence, the context information

is relatively more important than social information. Compared

with variant C, A and B both have better performance. This jus-

tifies the effectiveness of both the social connections and game

contextualization in game recommendation.
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Table 4: Overall comparison, the best and second-best results are in bold and underlined, respectively

Method

NDCG Recall Hit Ratio Precision

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

Popularity (time) 0.0896 0.1053 0.1256 0.1106 0.1584 0.2324 0.1600 0.2320 0.3290 0.0336 0.0255 0.0192

Popularity (count) 0.1654 0.2050 0.2380 0.2335 0.3527 0.4735 0.2960 0.4348 0.5745 0.0662 0.0512 0.0357

LightGCN 0.1861 0.2100 0.2475 0.2452 0.3174 0.4507 0.2849 0.3784 0.5504 0.0637 0.0447 0.0347

RGCN 0.2253 0.2616 0.2980 0.2888 0.4027 0.5359 0.3771 0.5107 0.6550 0.0863 0.0629 0.0441

GIN 0.3824 0.4179 0.4460 0.4851 0.5924 0.6872 0.5978 0.7163 0.8060 0.1375 0.0912 0.0582

PinSAGE 0.3963 0.4271 0.4529 0.4927 0.5863 0.6740 0.6025 0.7088 0.7926 0.1385 0.0899 0.0567

GAT 0.4053 0.4385 0.4655 0.5081 0.6082 0.6988 0.6209 0.7319 0.8158 0.1430 0.0936 0.0591

SCGRec 0.4351 0.4660 0.4921 0.5385 0.6311 0.7175 0.6519 0.7535 0.8331 0.1508 0.0969 0.0609
Improvement 6.98% 6.25% 5.70% 5.96% 3.75% 2.66% 4.98% 2.94% 2.11% 5.43% 3.52% 2.93%
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Figure 8: Ablation study of SCGRec

It is also worth noting that SCGRec performs better than the

best baseline even without the side information. The reason is that

the number of nodes in the game engagements is rather imbal-

anced, millions of players v.s. thousands of games. Hence, the direct

neighbor aggregation of existing GNNmethods on the player-game

interaction graph leads to the over-smoothing problem. However,

SCGRec adopts personalized embeddings, which are optimized di-

rectly from interaction rather than aggregation from neighbors.

6.4 Social and Context Influence
In this section, we show the influence of social and context infor-

mation by tuning the importance weightw
social

andwcontext.wself

is calculated by w
self
= 1 −w

social
−wcontext. Experiment results

are shown in Figure 9. Whenw
social

gradually becomes larger, SC-

GRec’s performance first increases and then decreases. It shows

social information contains lots of noise. Similar observations are

also shown in previous research. Junliang et al. [52] discuss that

explicit social links are not all reliable due to the existence of spam-

mers and bots. Also, the inconsistent social neighbors [49] can also

be seen as noise. When we pay much importance weight to social

embedding, the noise in social neighbors is also amplified, which

may lower down the performance. It can also be observed from

Figure 9 that whenwcontext gradually becomes larger, SCGRec per-

forms better. It shows the learned information from game context

graph is beneficial. Providing the flexibility in constructing game

context graph, SCGRec can easily model multi-type game context

information to boost model’s performance.
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Figure 9: Social and Context influence

7 CONCLUSION AND FUTUREWORK
In this paper, we comprehensively analyze nearly billion of user

behaviors on the Steam online gaming platform, including dwelling

time, social impacts, and game context information. Based on our

analysis, we argue that 3 key characteristics should be harnessed in

the game recommendation, which are personalization, game con-

textualization and social connection. Therefore, we propose a new

model SCGRec by tackling those characteristics simultaneously for

the game recommendation. Experimental results demonstrate the

superiority of SCGRec regarding game recommendation perfor-

mance. It has better performance against all existing GNN based

methods in game recommendation. The SCGRec model is simple

and rather flexible to incorporate various side information for rec-

ommendation, which provides the game industry with an effective

model to increase the game engagement of users.

We leave several research directions in game recommendations

as to future work. Firstly, dwelling time measures user direct game

engagement. But, how to effectively utilize dwelling time infor-

mation is still an open question. Secondly, the user game engage-

ment graph is a highly imbalanced bipartite graph. Differences in

neighbor aggregation behavior on the two sides can be further

investigated. Lastly, as shown in data analyses, there exist a large

portion of cold-start players. How to effectively recommend games

for those players is yet another challenging research problem.
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A DATA ANALYSIS
In this section, we present more details regarding the data analyses.

Table 5: Number of players w.r.t. different number of game
interactions

Interacted game number Player number
1 10,764,869

2 5,113,208

3 2,960,352

4 3,847,987

5 1,483,215

6 2,773,800

7 1,165,742

8 1,743,871

9 749,208

≥ 10 8,170,542

Table 5 shows the number of players with respect to different

number of game interactions. As discussed in Section 3.2, a large

portion of players only interact with limited number of games.

The data sparsity causes challenges when recommending for these

cold-start players. In SCGRec, we aim to mitigate this problem

by players’ social graph and games’ context graph. Players’ social

graph can link players to more games through social friends, and

games’ context graph can learn the relevance information among

games.

Table 6: Number of players w.r.t. different number of friends

Number of Social Friends Number of players
1 9,025,326

2 4,286,860

3 2,769,634

4 2,012,605

5 1,564,368

6 1,269,972

7 1,056,377

8 895,596

9 770,913

≥ 10 9,468,130

As shown in Figure 10, players number of friends follows power-

law distribution. Table 6 shows the exact number of players with

respect to different number of friends. It can be observed that a large

portion of players have limited number of friends. As side infor-

mation, social graph can link more games through social neighbor,

which is more important for cold-start players.

Table 7 shows pearson correlation coefficient between user-

friend and user-random. Similar to Table 2 in Section 3.4, we can

have two observations. Firstly, the pearson correlation coefficient

between player and their friends is much higher than random play-

ers. It shows friends tend to have preference on the same game

genre. Secondly, the social influence on different genres are differ-

ent. For example, the pearson correlation coefficient of action genre
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Figure 10: Players’ number of friends distribution

Table 7: Pearson correlation coefficient w.r.t. genres

Genre player-friend player-random
Action 0.4597 0.1782

Adventure 0.1449 0.0546

RPG 0.2201 0.0661

Simulation 0.3722 0.0828

Strategy 0.3552 0.1070

is much larger than adventure genre. It shows social influence has

a different level of impact on different genres.
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Figure 11: Game-Game Co-Dwelling

Figure 11 shows co-dwelling relation among part of the games.

Similar to co-purchase relation shown in Figure 3, figure 11 also

shows a high correlation between game pairs with respect to co-

dwelling time. For example, co-dwelling time of game "Half-Life"

and "Half-Life 2: Episode Two" is very long. It shows an apparent

signal of game co-dwelling context.

B EXPERIMENTAL SETTING
Besides the data analyses, we also include more experimental set-

tings.

Table 8: Best Hyper-parameter Setting

Hyper-parameter Search range Best setting
Embedding size {4,8,16,32,64} 32

Learning rate {0.03,0.01,0.001} 0.03

Batch size {128,256,512,1024} 1024

λ {1e-3, 1e-4, 1e-5} 1e-4

Wsocial {0.0,0.1,0.2,0.3,0.4,0.5} 0.1

Wcontext {0.0,0.1,0.2,0.3,0.4,0.5} 0.5

Table 9: Model comparison

Model Social Context Personalization
Popularity (time) × × ×

Popularity (count) × × ×

LightGCN × × ✓
GIN × × ✓
PinSAGE × × ✓
GAT × × ✓
RGCN ✓ ✓ ✓
SCGRec ✓ ✓ ✓

The search range and best setting of hyper-parameters are given

in Table 8.Wsel f is calculated byWsel f = 1 −Wsocial −Wcontext .

The same search range is applied to all the baselines.

Table 9 presents comparisons among all methods. Popularity

(time) and Popularity (count) are non-personalized recommenda-

tion models. They directly recommend games based on popularity.

LightGCN, GIN, PinSAGE and GAT utilize only user-game interac-

tion data, and learn the node embedding by different GNN models.

RGCN and our proposed SCGRec incorporate all the information

including user-game interaction, social graph and game contex-

tualization. A brief description of all the baselines are given as

follows:

• Popularity (time): Same as Popularity (count), except that we

measure the game popularity based on total dwelling time.

• Popularity (count): Directly rank all the games based on the

number of players. Each player is recommended with the same

game list with no personalization.

• LightGCN [14]: LightGCN simplifies Graph Convolution Net-

work (GCN) [17] by removing transformation matrix, non-linear

transformation, and self-loop, which is the SOTA GNN recom-

mendation model.

• RGCN [31]: Relational Graph Convolution Network learns node

embedding from all the side information. Each relation type is

assigned one GCN layer for relation-specific aggregation.

• GIN [48]: Graph Isomorphism Network is a simple graph neural

network that expects to achieve the ability as the Weisfeiler-

Lehman graph isomorphism test.

• PinSAGE [51]: PinSAGE combines efficient random walks in

graph convolution to learn node embedding on large-scale rec-

ommendation bipartite graphs.

• GAT [37]: Graph Attention Network firstly learns the attention

scores for neighbors before its neighboring aggregation.
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