
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339099200

Approximation Algorithm for Shortest Path in Large Social Networks

Article in Algorithms · February 2020

DOI: 10.3390/a13020036

CITATIONS

7
READS

311

3 authors, including:

Liangwei Yang

University of Illinois at Chicago

13 PUBLICATIONS 106 CITATIONS

SEE PROFILE

All content following this page was uploaded by Liangwei Yang on 19 February 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/339099200_Approximation_Algorithm_for_Shortest_Path_in_Large_Social_Networks?enrichId=rgreq-447c446daa33626fb285a79c19fb2690-XXX&enrichSource=Y292ZXJQYWdlOzMzOTA5OTIwMDtBUzo4NjAzMDYwMDc5MjQ3MzZAMTU4MjEyNDM0NDE4Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/339099200_Approximation_Algorithm_for_Shortest_Path_in_Large_Social_Networks?enrichId=rgreq-447c446daa33626fb285a79c19fb2690-XXX&enrichSource=Y292ZXJQYWdlOzMzOTA5OTIwMDtBUzo4NjAzMDYwMDc5MjQ3MzZAMTU4MjEyNDM0NDE4Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-447c446daa33626fb285a79c19fb2690-XXX&enrichSource=Y292ZXJQYWdlOzMzOTA5OTIwMDtBUzo4NjAzMDYwMDc5MjQ3MzZAMTU4MjEyNDM0NDE4Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Liangwei-Yang-2?enrichId=rgreq-447c446daa33626fb285a79c19fb2690-XXX&enrichSource=Y292ZXJQYWdlOzMzOTA5OTIwMDtBUzo4NjAzMDYwMDc5MjQ3MzZAMTU4MjEyNDM0NDE4Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Liangwei-Yang-2?enrichId=rgreq-447c446daa33626fb285a79c19fb2690-XXX&enrichSource=Y292ZXJQYWdlOzMzOTA5OTIwMDtBUzo4NjAzMDYwMDc5MjQ3MzZAMTU4MjEyNDM0NDE4Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Illinois_at_Chicago?enrichId=rgreq-447c446daa33626fb285a79c19fb2690-XXX&enrichSource=Y292ZXJQYWdlOzMzOTA5OTIwMDtBUzo4NjAzMDYwMDc5MjQ3MzZAMTU4MjEyNDM0NDE4Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Liangwei-Yang-2?enrichId=rgreq-447c446daa33626fb285a79c19fb2690-XXX&enrichSource=Y292ZXJQYWdlOzMzOTA5OTIwMDtBUzo4NjAzMDYwMDc5MjQ3MzZAMTU4MjEyNDM0NDE4Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Liangwei-Yang-2?enrichId=rgreq-447c446daa33626fb285a79c19fb2690-XXX&enrichSource=Y292ZXJQYWdlOzMzOTA5OTIwMDtBUzo4NjAzMDYwMDc5MjQ3MzZAMTU4MjEyNDM0NDE4Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

algorithms

Article

Approximation Algorithm for Shortest Path in Large
Social Networks

Dennis Nii Ayeh Mensah * , Hui Gao and Liang Wei Yang

Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 610051, China;
huigao@uestc.edu.cn (H.G.); liangwei_yang@outlook.com (L.W.Y.)
* Correspondence: niiwise@live.com; Tel.: +86-158-8443-4327

Received: 31 December 2019; Accepted: 31 January 2020; Published: 6 February 2020
����������
�������

Abstract: Proposed algorithms for calculating the shortest paths such as Dijikstra and
Flowd-Warshall’s algorithms are limited to small networks due to computational complexity and cost.
We propose an efficient and a more accurate approximation algorithm that is applicable to large scale
networks. Our algorithm iteratively constructs levels of hierarchical networks by a node condensing
procedure to construct hierarchical graphs until threshold. The shortest paths between nodes in the
original network are approximated by considering their corresponding shortest paths in the highest
hierarchy. Experiments on real life data show that our algorithm records high efficiency and accuracy
compared with other algorithms.

Keywords: parallel programing; complex networks; hierarchical networks; approximation algorithm;
shortest path

1. Introduction

The internet and its associated technologies have changed the way society conducts businesses,
and the way that families and friends relate with each other. Social networking has become so popular
such that users have drifted from the traditional physical media (the print and broadcasting media) to
a more sophisticated social interaction. Computer scientists are looking into designing tools, models,
and applications in diverse fields in internet application technologies [1] such as communication [2],
recommendations, social marketing, terrorist threats [3], and key node mining [4]. Efficiently computing
the shortest path between any two nodes in a network is one of the most important concerns of
researchers since it has a great potential for mobilizing people [5]. Exact algorithms such as Dijkstra’s
and Floyd-Warshall’s algorithms have not performed so well on large scale networks due to their
high computational complexity. Even though these algorithms are so popular for their accuracy and
applications, they cannot be efficiently applied to our current trend of large-scale datasets. We design
an approximate algorithm to calculate the distances of the shortest paths in a modeled large-scale
network. Chow [6] presented a heuristic algorithm for searching the shortest paths on a connected,
undirected network. Chow’s algorithm relies on a heuristic function whose quality affects the efficiency
and accuracy of estimation. Rattgan et al. [7] designed a network structure index (NSI) algorithm to
estimate the shortest path in networks by storing data in a structure. Construction of the structure
however consumes so much time and space. Tang et al. [8] presented an algorithm, CDZ (Center
Distance to Zone), based on local centrality and existing paths through central nodes (10% of all
nodes) and approximates their distances by means of the shortest paths between the central nodes
computed by Dijkstra’s algorithm. Although CDZ achieved high accuracy on some social networks
within a reasonable time, it performed poorly on large scale networks due to the large number of
central nodes. Tretyakov et al. [9] proposed two algorithms, LCA (Lowest Common Ancestor) and
LBFS, (Lexicographic Breadth-First Search) based on landmark selection and shortest-path trees (SPTs).

Algorithms 2020, 13, 36; doi:10.3390/a13020036 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-4011-3803
https://orcid.org/0000-0002-9557-7739
http://www.mdpi.com/1999-4893/13/2/36?type=check_update&version=1
http://dx.doi.org/10.3390/a13020036
http://www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 36 2 of 12

Although these algorithms perform well in practice, they do not provide strong theoretical guarantees
on the quality of approximation. LCA depends on the lowest common ancestors derived from SPTs and
landmarks to compute the shortest path. LBFS adopts SPTs to collect all paths from nodes to landmarks
by using best coverage approach and split the network into sub networks. Based on the usual BFS
traversal in these sub networks, LBFS can approximate the shortest path. Saeed Maleki [10] proposed
the Dijkstra strip mined relation (DSMR) algorithm for calculating the single source shortest path in
networks. With their approach, the entire network graph is passed to a distributor engine which slices
the graph into subgraphs equal to the number of processors so that all subgraphs have approximately
the same number of edges. After each subgraph is assigned to a processor, they are passed to optional
processing procedures, pruning, and subgraph extraction. Pruning removes all edges that do not play
major role in the shortest path calculation from any source vertex, while subgraph extraction extracts
a subgraph from the original graph that contains most of the shortest paths traversing through that
subgraph. They apply dijkstra’s algorithm on each subgraph and compute the shortest distances from
source to each vertex by synchronizing with all other subgraphs. Shortest path is computed only from
a single source. A* [11] (A star) algorithm is an extension of Dijkstra’s algorithm but in this case the
direction to the shortest path is optimized by heuristics. A* calculates the cost of neighboring nodes
and then select the possible path with the lowest cost to traverse to the target node. It does that by
identifying which n node to the target node has the lowest cost after summing it with the neighbor
node with the lowest cost. The entire graph has to be loaded into memory to find the shortest path
between nodes which makes it computationally expensive. Even though A* enjoys optimality and
completeness, the algorithm is not scalable to large graphs. Geisberger et al. [12] proposed a shortest
path algorithm based on node contraction. Contraction is done by calculating the shortest path between
all node pairs (immediate neighbors) and then introduce a shortcut path between them. The paths
between two nodes can be reduced by the shortcut edge but not the cost. The shortest path between a
pair of nodes is calculated in two ways, one from the shortcut edges of the starting node and the other
from the ending nodes, respectively, until they meet. The total distance from both ends is taken as the
shortest path between these two nodes. The major challenge with this algorithm is with the order of
contracting nodes. The fewer shortcut edges introduced, the faster it is to calculate the shortest path.

Even though there exists a large variety of algorithms to calculate the shortest paths, there are few
approximate algorithms based on hierarchical networks.

To deal with large scale hierarchical networks, we present a novel approximate algorithm based
on the hierarchy of networks and parallel computing, which is able to efficiently and accurately scale
up to large networks. To ensure high efficiency, we condense the central nodes and their neighbors into
super nodes to construct higher-level networks iteratively, until the scale of the network is reduced
to a threshold scale. In order to increase computational power and memory, for example if we use a
machine with 32 cores, we pass a subset of the entire network (level i) hierarchy to each core evenly.
After which the distances of the shortest paths in the original network are calculated by means of
their central nodes in the hierarchical network. The performance of our algorithm was tested on
four different real networks. Experimental results show that the runtime per query is only a few
milliseconds on large networks, while accuracy is still maintained.

2. Construction of Hierarchical Networks

Let G = (V, E) be an undirected and unweighted network with n = |V| nodes and e = |E| edges. A
path Ps,t between two nodes s, t∈V is represented as a sequence (s, u1, u2, , ul−1, t), where {s,
u1, u2, , ul−1, t}⊆V and {(s, u1), (u1, u2), , (ul−1, t)}⊆E. d(s, t) is defined as the length of the
shortest path between s and t.

Based on G (parent network), we construct a series of undirected and weighted networks with
different scales. The original network G is taken as the bottom level or level 0 network. We define the
role of various nodes at each level of graph construction as follows:

Algorithms 2020, 13, 36 3 of 12

• Normal nodes are the immediate neighbors of nodes with the highest degree centrality at each of
hierarchical graph construction.

• Super nodes are condensed nodes that are represented by a single node in the next hierarchy.
• Central nodes are nodes that have been selected to absorb its neighborhood nodes. After

absorption, the central nodes become super nodes.
• Sub-nodes are all other nodes that have a path to the central node, a path of radius r.

For each level of construction, i.e., from bottom to top, we iteratively perform the following
steps. A normal node with the largest degree (having lot of clusters) is selected as a central node and
condensed with its normal neighbors (other than super nodes) into a super node. The edges between
the normal nodes are redirected to their corresponding super nodes. Condensing of current level
network is completed when all nodes are merged into super nodes. These nodes are regarded as
normal nodes in the next level network. Edges between two super nodes in the previous hierarchy
results in a single link for two normal nodes in the next level network. The weight of an edge between
two adjacent nodes in the next level network represents the approximate distance between the nodes.
The topmost network is obtained when the number of nodes in the next level network is below a given
threshold t.

Figure 1 shows the process of constructing a hierarchical network. Figure 1a is the current level
network whose red nodes represent central nodes. Central nodes condense with their neighbors (blue
nodes) to form super nodes respectively, which results in the next level network as shown in Figure 1b.
All super nodes in the previous level network (Figure 1a) are considered normal nodes in the next
level network as shown in Figure 1b. The red node in Figure 1a will be selected as the central node,
and condense with its neighbors into a super node in the next level hierarchy.

Algorithms 2020, 13, x FOR PEER REVIEW 3 of 12

• Super nodes are condensed nodes that are represented by a single node in the next hierarchy.
• Central nodes are nodes that have been selected to absorb its neighborhood nodes. After

absorption, the central nodes become super nodes.
• Sub-nodes are all other nodes that have a path to the central node, a path of radius r.

For each level of construction, i.e., from bottom to top, we iteratively perform the following
steps. A normal node with the largest degree (having lot of clusters) is selected as a central node and
condensed with its normal neighbors (other than super nodes) into a super node. The edges between
the normal nodes are redirected to their corresponding super nodes. Condensing of current level
network is completed when all nodes are merged into super nodes. These nodes are regarded as
normal nodes in the next level network. Edges between two super nodes in the previous hierarchy
results in a single link for two normal nodes in the next level network. The weight of an edge between
two adjacent nodes in the next level network represents the approximate distance between the nodes.
The topmost network is obtained when the number of nodes in the next level network is below a
given threshold t

Figure 1 shows the process of constructing a hierarchical network. Figure 1a is the current level
network whose red nodes represent central nodes. Central nodes condense with their neighbors (blue
nodes) to form super nodes respectively, which results in the next level network as shown in Figure
1b. All super nodes in the previous level network (Figure 1a) are considered normal nodes in the next
level network as shown in Figure 1b. The red node in Figure 1a will be selected as the central node,
and condense with its neighbors into a super node in the next level hierarchy.

Figure 1. Construction of hierarchical networks. (a) graph at level i, (b) level i + 1 network.

3. Algorithm Based on the Hierarchy of Networks

After transforming the original network into a number of hierarchical networks, the distance of
the shortest path between any two nodes in the lower network can be estimated by considering their
corresponding central nodes in the higher-level network.

Let ˆ (,)id s t be the approximate distance between nodes s and t in the level i network. The

distance of shortest path between nodes s and t in the original network is approximated by 0
ˆ (,)d s t

. In general, ˆ (,)id s t is iteratively computed by

1

ˆ ˆ(,) (,)ˆ (,) , 0,
ˆ ˆ ˆ(,) (,) (,)
i s i t s t

i

i s i s t i t s t

d s c d t c c c
d s t i

d s c d c c d c t c c+

 + == ≥
+ + ≠

 (1)

where cs and ct are the central nodes of nodes s and t respectively. Figure 2 shows an example of

shortest path approximation using Equation (1). ˆ (,)i sd s c a nd ˆ (,)i td t c are the approximate

distances from nodes si and ti to their respective central nodes is
c and it

c in the level i network.

(a) (b)

Figure 1. Construction of hierarchical networks. (a) graph at level i, (b) level i + 1 network.

3. Algorithm Based on the Hierarchy of Networks

After transforming the original network into a number of hierarchical networks, the distance of
the shortest path between any two nodes in the lower network can be estimated by considering their
corresponding central nodes in the higher-level network.

Let d̂i(s, t) be the approximate distance between nodes s and t in the level i network. The distance
of shortest path between nodes s and t in the original network is approximated by d̂0(s, t). In general,
d̂i(s, t) is iteratively computed by

d̂i(s, t) =
{

d̂i(s, cs) + d̂i(t, ct) cs = ct

d̂i(s, cs) + d̂i+1(cs, ct) + d̂i(ct, t) cs , ct
, i ≥ 0, (1)

where cs and ct are the central nodes of nodes s and t respectively. Figure 2 shows an example of shortest
path approximation using Equation (1). d̂i(s, cs) a nd d̂i(t, ct) are the approximate distances from nodes
si and ti to their respective central nodes csi and cti in the level i network. d̂i+1(s, cs) and d̂i+1(c, ts) are
the distances from nodes si+1 and ti+1 to their common central nodes in the level i + 1 network.

Algorithms 2020, 13, 36 4 of 12

Algorithms 2020, 13, x FOR PEER REVIEW 4 of 12

1
ˆ (,)i sd s c+ and 1

ˆ (,)i sd c t+ are the distances from nodes si+1 and ti+1 to their common central nodes
in the level i + 1 network.

Figure 2. Illustration of iterative approximation.

We define the longest distance from sub nodes to its corresponding central node as the radius 𝑟
of the super node. For example, assuming normal nodes in the level i network in Figure 2 have the
same radius r, then the radiuses of their corresponding super nodes will range from r to 3r + 1 (Note:
the longest path to a central node is 3r). However, computing for all radii of super nodes in the
network hierarchy will consume so much memory and time. For this reason, we define an appr radius 𝑟 for all super nodes in the level i network by approximating the distance between two adjacent
normal nodes in the level i network. As shown in Figure 3, the appr radiuses of super nodes in the
level i + 1 network are the approximate distances between the centers of two adjacent normal nodes
(represented as hollow circles). Normal nodes in the level i + 1 network were derived from super
nodes in the level i network whose appr radiuses were same. The apprr adius of normal nodes in level
i network is defined by 𝑟 = 0, 𝑖 = 02𝑟 0 < 𝑖 < 𝑘, (2)

where k is the number of hierarchical networks with different scales including the original network.
Furthermore, Equation (2) can be written as 2 1i

ir = − when 0 i k≤ < . We approximate the
distance from node s to its central node c in the level i network by

ˆ (,) 2 1i id s c r= + (3)

The approximate distance between adjacent nodes in level i network can also be written as
2 1ir + . Substituting Equations (2) and (3) into Equation (1), the upper bound of ˆ (,)id s t can be
calculated by

ˆ (,)i sd s c

ˆ (,)i td t c

1
ˆ (,)i s td c c+

1
ˆ (,)i sd s c+

1
ˆ (,)i sd c t+

Figure 2. Illustration of iterative approximation.

We define the longest distance from sub nodes to its corresponding central node as the radius r of
the super node. For example, assuming normal nodes in the level i network in Figure 2 have the same
radius r, then the radiuses of their corresponding super nodes will range from r to 3r + 1 (Note: the
longest path to a central node is 3r). However, computing for all radii of super nodes in the network
hierarchy will consume so much memory and time. For this reason, we define an appr radius ri for
all super nodes in the level i network by approximating the distance between two adjacent normal
nodes in the level i network. As shown in Figure 3, the appr radiuses of super nodes in the level i + 1
network are the approximate distances between the centers of two adjacent normal nodes (represented
as hollow circles). Normal nodes in the level i + 1 network were derived from super nodes in the
level i network whose appr radiuses were same. The apprr adius of normal nodes in level i network is
defined by

ri =

{
0, i = 0

2ri−1 0 < i < k
, (2)

where k is the number of hierarchical networks with different scales including the original network.
Furthermore, Equation (2) can be written as ri = 2i

− 1 when 0 ≤ i < k. We approximate the distance
from node s to its central node c in the level i network by

d̂i(s, c) = 2ri + 1 (3)

The approximate distance between adjacent nodes in level i network can also be written as 2ri + 1.
Substituting Equations (2) and (3) into Equation (1), the upper bound of d̂i(s, t) can be calculated by

d̂i(s, t) =

2 i = 0, cs = ct

2i+2
− 2 0 < i < k− 1, cs = ct

2i+2
− 2 + d̂i+1(cs, ct) 0 < i < k− 1, cs , ct

dk−1(s, t) i = k− 1

.
(4)

The distance between any two adjacent nodes in the top-level network is approximated as 2rk−1 + 1.
dk−1(s, t) in Equation (4) is the length of shortest path between nodes s and t in the top-level network
computed by Dijsktra’s algorithm.

Algorithms 2020, 13, 36 5 of 12

Algorithms 2020, 13, x FOR PEER REVIEW 5 of 12

2

2
1

1

2 0,
2 2 0 1,ˆ (,) .ˆ2 2 (,) 0 1,

(,) 1

s t
i

s t
i i

i s t s t

k

i c c
i k c c

d s t
d c c i k c c

d s t i k

+

+
+

−

= =
 − < < − ==

− + < < − ≠
 = −

 (4)

The distance between any two adjacent nodes in the top-level network is approximated as

12 1kr − + . 1(,)kd s t− in Equation (4) is the length of shortest path between nodes s and t in the top-
level network computed by Dijsktra’s algorithm.

Figure 3. Illustration of approximate distance ri.

The construction of each level of the hierarchical network is described in Algorithm 1. Algorithm
1 consumes O(nilogni) time to rank the ni nodes in the level i network and O(ni + ei) time to generate
the level i + 1 network, where ei is the number of edges in level i network. The space complexity of
Algorithm 1 is O(n + e).

Algorithm 1. First Hierarchy
Notations: 𝑜𝑙𝑑 = (𝑉, 𝐸) is the original network, 𝑛𝑒𝑤 = (𝑉 , 𝐸) is the next level network, 𝑆 is the super node 𝑐 and its neighboring normal nodes repectively
1: function SingleCluster (old)
2: C←HighestDegree (old)
3: for c ∈ C do
4: if c ∉ S
5: Sc = {c} U {c.neighbors\S}
6: S←S U {Sc}
7: Edges connected to the sub nodes inside Sc are redirected to Sc, also the multiple

edges are merged into a single one.
8: end if
9: end for
10: All super nodes in S are regarded as normal nodes in V′ of new.
11: return new
12: end function

ir

1 1
ˆ (,) 2 1i s id s c r+ += +

ir

1 2 1i ir r+ = +

ˆ (,) 2 1i s id s c r= +

1 2 1i ir r+ = +

Figure 3. Illustration of approximate distance ri.

The construction of each level of the hierarchical network is described in Algorithm 1. Algorithm
1 consumes O(nilogni) time to rank the ni nodes in the level i network and O(ni + ei) time to generate
the level i + 1 network, where ei is the number of edges in level i network. The space complexity of
Algorithm 1 is O(n + e).

Algorithm 1. First Hierarchy

Notations: old = (V, E) is the original network, new = (V′, E′) is the next level network, S is the super node c
and its neighboring normal nodes repectively
1: function SingleCluster (old)
2: C←HighestDegree (old)
3: for c ∈ C do
4: if c < S
5: Sc = {c} U {c.neighbors\S}
6: S←S U {Sc}
7: Edges connected to the sub nodes inside Sc are redirected to Sc, also the multiple edges are merged
into a single one.
8: end if
9: end for
10: All super nodes in S are regarded as normal nodes in V′ of new.
11: return new
12: end function
13: function HighestDegree (old)
14: for each v ∈ V let d[v]←degree (v)
15: sort V by d[v]
16: v(i) denotes the vertex with the i-th highest d[v]
17: return sequence {v(1), v(2), , v(|V|)}
18: end function

4. Parallelization

In order to reduce the overall computational runtime for computing the shortest path from s to t,
we parallel to jobs to each processor on the computing hardware. Parallelization is simultaneously
employing multiple compute resources by sharing tasks among these resources to solve a computational

Algorithms 2020, 13, 36 6 of 12

problem. Two common approaches to run our algorithm are via either threads or multiple processes.
Threads treat each job as sub tasks of a single process and therefore would have to access the same
memory location. If synchronization is not done properly, there could be conflicts for example when
there is access to the same memory location at the same time. A safer approach is to submit each
task to a completely separate memory location. We distribute networks evenly on to multiple cores
thus passing level i networks to a cpu core for computation. Dijkstra’s algorithm can only compute
the shortest path from s to t after it has completed computation of shortest path d(s, w) where w is
any vertex that satisfies

∣∣∣∣∣∣d(s, w)
∣∣∣∣∣∣ <∣∣∣∣∣∣d(s, t). It is evident that this process will increase the idleness on

processors that leads to a reduction in resource utilization and efficiency [13] where efficiency p was
about

√
p. Figure 4 shows the architecture of the various stages of our proposed algorithm. The given

network is the input data to the hierarchical graph construction process at the pre-processing stage.
The graph in partitioned into k number of hierarchies and distributed across the processor cores of the
computing machine.

Algorithms 2020, 13, x FOR PEER REVIEW 6 of 12

13: function HighestDegree (old)
14: for each v ∈ V let d[v] ←degree (v)
15: sort V by d[v]
16: v(i) denotes the vertex with the i-th highest d[v]
17: return sequence {v(1), v(2), ……, v(|V|)}
18: end function

4. Parallelization

In order to reduce the overall computational runtime for computing the shortest path from 𝑠 to 𝑡, we parallel to jobs to each processor on the computing hardware. Parallelization is simultaneously
employing multiple compute resources by sharing tasks among these resources to solve a
computational problem. Two common approaches to run our algorithm are via either threads or
multiple processes. Threads treat each job as sub tasks of a single process and therefore would have
to access the same memory location. If synchronization is not done properly, there could be conflicts
for example when there is access to the same memory location at the same time. A safer approach is
to submit each task to a completely separate memory location. We distribute networks evenly on to
multiple cores thus passing level 𝑖 networks to a cpu core for computation. Dijkstra’s algorithm can
only compute the shortest path from s to t after it has completed computation of shortest path 𝑑(𝑠, 𝑤)
where w is any vertex that satisfies ||𝑑(𝑠, 𝑤)|| < ||𝑑(𝑠, 𝑡). It is evident that this process will increase
the idleness on processors that leads to a reduction in resource utilization and efficiency [13] where
efficiency 𝑝 was about 𝑝. Figure 4 shows the architecture of the various stages of our proposed
algorithm. The given network is the input data to the hierarchical graph construction process at the
pre-processing stage. The graph in partitioned into k number of hierarchies and distributed across
the processor cores of the computing machine.

G=(V,E)

Graph construction

Partitioning

Parallelization

Approximate shortest path for each
node pair

Input Data

Level i hierarchy

Topmost i
d[i][j]

Pre-processing

core1 Core 2 Core 3 Core n

Level i+n hierarchy

K -graphs

Figure 4. Architecture of the algorithm for computing shortest path.

Algorithm 2 describes the subsequent construction hierarchies. Algorithm 1 is repeatedly
executed until the top-level network is achieved which is essentially equal to the partitioning value
(p) nodes given a threshold (t). The time complexity for constructing hierarchical networks is given
as 𝑂 ∑ (𝑛 log 𝑛 + 𝑛 + 𝑒) and space complexity as 𝑂(𝑘𝑛 + 𝑒) . In the top level network,
Dijsktra's algorithm require 𝑂(𝑚) time to compute the shortest paths between each pair of nodes
and 𝑂(𝑚) space to store the distances, where 𝑚 is the number of nodes in the top level network.

Figure 4. Architecture of the algorithm for computing shortest path.

Algorithm 2 describes the subsequent construction hierarchies. Algorithm 1 is repeatedly
executed until the top-level network is achieved which is essentially equal to the partitioning value
(p) nodes given a threshold (t). The time complexity for constructing hierarchical networks is given
as O

(∑k−1
i=0(ni log ni + ni + ei)

)
and space complexity as O(kn + e). In the top level network, Dijsktra’s

algorithm require O
(
m2

)
time to compute the shortest paths between each pair of nodes and O

(
m2

)
space to store the distances, where m is the number of nodes in the top level network. Incorporating
time and space complexity into Dijsktra’s algorithm requires O

(
kn + e + m2

)
space to store hierarchical

networks and corresponding distances in the top level network.

Algorithms 2020, 13, 36 7 of 12

Algorithm 2. Hierarchy Networks

Preconditions: Network original = (V, E), d[i][j] records the shortest distance between node i and j in the top
level network.
1: Network = original
2: k = Network/number_of _processors
1: function HierarchyCluster
2: Network current = original;
3: while current.size > threshold
4: If len(current) <= k
5: next = SingleCluster(current);//Algorithm 1

else
6: current = next;

endif
7: end while//hierarchy networks
8: Employ Dijsktra’s algorithm to find shortest path between any pair of nodes on the top level network.
Save the results to d[i][j].
9: return d[i][j]
10: end function

After the construction of a number of networks from Algorithm 2, Algorithm 3 distributes the
networks across each processor core of the computing hardware for computation.

Algorithm 3. Parallelization of Hierarchies

Input: level i networks computed by Algorithm 2.
Function Create Pool_Object(p) = processes
1: part_generator = 4*len(p._pool)
2: max_number_of_clusteres = int(len(original)/part_generator//total number of hierachies
3: k = len(max_number_of _clusters)
4: return k
5: Distribute hierarchy networks evenly to each processor
6: Parallel_mapping = p.map (btwn_pool, zip([original] *number of clusters, hierarchies))
7: Return parallel_mapping

Finally, the approximate distances of the shortest paths in the original network can be calculated
by Algorithm 4. Algorithm 4 requires at most O

(
kn2

)
/p time to compute the shortest paths for all pairs

of nodes, where p is the number of processor cores.

Algorithms 2020, 13, 36 8 of 12

Algorithm 4. Calculate Shortest Path

Preconditions: Network network = G(V, E), d[i][j] records shortest distances between nodes in the top level
network calculated by Algorithm 2; k denotes the number of hierarchical networks constructed by Algorithm 2,
including the original network; cs and ct are the central nodes of s and t respectively; supernode(cs) is the super
node which contains nodes cs and s and its regarded as a normal node in the next level network.
1: function IterativeApproximation(s,t,i)
2: for i in parallel_mapping
3: if i < k−1
4: if cs = ct in the level i network//hierarchy networks
5: return d(s, cs)+d(t, ct)//use Equation (4) to calculate d(s, cs), d(t, ct)
6: end if
7: else if cs , ct in the level i network
8: return d(s, cs) + IterativeApproximation (supernode(cs), supernode(ct), i + 1) + d(t, ct)//Equation
(4)
9: end else
10: end if
11: else
12: return d[s][t]//use the distances between nodes in the top network computed by Dijsktra in
Algorithm 2
13: end else
14: end function
15: function CalculateshortestPath
16: if s ∈ V is directly connected with t ∈ V then
17: result = 1;
18: end if
19: else
20: result = IterativeApproximation (s, t, 0)//iterative approximation for the d0(s, t)
21: end else
22: return result
23: end function

Based on the above analysis, the time complexity for approximating the shortest distances
in an undirected and unweighted network with n nodes and e edges can be calculated as
O
(
m3 +

∑k−1
i=0(ni log ni + ni + ei) + kn2/p

)
, and the memory complexity as O

(
kn + e + m2

)
.

We compared the complexity of CDZ [9] and LBFS [10] with our algorithm. CDZ algorithm
selects c central areas in the network with n nodes and e edges and computes the distances between
c and its central nodes by Dijkstra’s algorithm. The time complexity of CDZ algorithm is given as
O
(
ed + nlogn + c3

)
. The number of central areas in CDZ algorithm is about 10% of the number of

nodes. LBFS algorithm selects M pairs of nodes from the network to obtain i landmarks by “best
coverage strategy” in a network with n node and e edges. The time complexity of LBFS is given as
O
(
M3 + le + l2D2

)
, where D is the average size of the sub network related to the landmarks. Sometimes,

the number of pairs of nodes in LBFS could be too large to make a best coverage and selection.
The advantage of our algorithm over LBFS is that, the number of the nodes in the top network is
relatively very small (m is below a certain threshold), which significantly reduces the complexity,
moreover, optimum utilization of hardware and memory was realized by paralleling the computing
tasks which yielded a significant improvement.

5. Completeness, Soundness and Cost Optimality

In this section, we will show that our proposed algorithm is sound, complete, and optimal. An
algorithm is sound if it always returns an answer. Completeness on the other hand is the guarantee
that an algorithm will always return the true results for any arbitrary inputs. Our proposed algorithm

Algorithms 2020, 13, 36 9 of 12

will always find the best solution to finding the shortest path even in worse case scenarios, the lower
bound for the function for time complexities is used in computing the shortest path.

5.1. Sound and Completeness

Suppose we are to calculate the shortest path between two arbitrary nodes s and t. Our algorithm
searches for their corresponding graph in the top-level hierarchy i. If both nodes are contained in a
super node cs or cs, the shortest path distance is approximated by the distances from their respective
nodes to central nodes cs or ct and cs ⊃

⋂
s and t. For ct , cs, the distances are approximated by the

node s’s distance to Cs + the distance between node cs and ct in the next higher network (i + 1) + the
distance from t to ct. If s, t @ cs, or ct, then the approximated distance between s and t existed within
different central nodes within or across different levels of i. the algorithm will always search for the
central nodes of s and t until the topmost hierarchy. If there is path between central nodes of s and t,
and shortest path between s and t is not recorded at the topmost hierarchy, then the algorithm returns
a path value of 0, which means there is no edge between s and t that is no path between s and t.

5.2. Optimality

An algorithm is optimal if the time complexity for finding the solution to a problem in worst
case scenario is in the lowest range of the functions that describes the time complexity in worst case
scenario to the problem. Our algorithm finds the shortest path distance from the smaller graph to the
largest, i.e., a top bottom approach, if the path exists in the smaller graph, the algorithm selects that
path terminates. Approximation between hierarchies are performed iteratively so as optimize the task
rather than searching through the entire levels of graph to select the shortest path. If a path doesn’t
exist in a level hierarchy, that graph is discarded and the next level graph loaded, a smaller graph
is always considered which in effect minimizes the cost. The algorithm always searches within the
smallest ith value(s) which contain the approximated path of the two nodes in question.

6. Experimental Results and Discussions

Our algorithm was implemented by java programming language, running on a PC with intel core
i5 4300M, CPU at 2.60 GHZ dual core and a 4 GB RAM. Performance of the algorithm was evaluated
on four real undirected and weighted networks; Email-Enron [14], itdk0304_rlinks [15], DBLP [16]
and roadNet. Email-Enron contains about half a million email communications among users whose
nodes are the email addresses of senders or receivers and edges are the communication relationships.
User’s email addresses represents nodes on the dataset such that if a user i sent at least one email to
another user j, then there exists an undirected edge from i to j. Tdk0304_rlinks is a CAIDA Skitter
Router-Level Topology and Degree Distribution of an undirected internet router-level, which contains
the relationships among nodes that access the router where the nodes are users or websites and the
edges are the relationships between them. DBLP network contains information on computer science
publications, in which each node corresponds to an author; two authors are connected by an edge
if they have co-authored at least one publication. The roadNet is a California road traffic network
composed of roads and sites network with the intersections and endpoints as nodes and the connecting
roads as edges. Since most roads are unidirectional, the network graph is represented as an undirected
graph. The number of nodes V, edges E, diameter of network D, average degree <k>, and the largest
degree kmax of these four networks are shown in Table 1.

Algorithms 2020, 13, 36 10 of 12

Table 1. Basic information of four networks.

Email-Enron itdk0304_rlinks DBLP roadNet

V 36,692 190,914 511,163 1,405,790

E 367,662 1,215,220 3,742,140 23,442,590

D 12 24 25 30

<k> 10.020 6.365 7.320 9.433

kmax 1383 1071 976 1244

We use Path Ratio p to assess the accuracy of the algorithm. p is defined as

p =

∑pr
i=1 P fi∑pr
i=1 POi

(5)

where Pr is the total number of pairs of nodes, P fi i is the distance between pairs of nodes computed
by the approximation algorithm, and POi is the accurate distances computed by Dijkstra’s algorithm.
The value of p is always greater than 1 since approximate distances are always longer than their
corresponding accurate distances. Table 2 shows experimental results on preprocess time, average
query time, and path ratio from our algorithm compared with that of CDZ. The threshold value is set at
100. Tinit is the total time for preprocessing. Tq is the average runtime for 10,000 random queries. From
table 2, it can be construed that our algorithm performed relatively better on four different networks. It
ran 10 times faster than CDZ especially on DBLP and roadNet networks. Moreover, the approximation
for the shortest path is more accurate on Email-Enron and itdk0304_rlinks, compared with CDZ on
DBLP and roadNet.

Table 2. Runtime and accuracy of CDZ and our algorithm on four networks.

Graph Our Algorithm CDZ

Network Tinit (ms) Tq (ms) p Tinit (ms) Tq (ms) p

Email-Enron 10,919.21 1.1720 1.022 112,448 11.38 1.026

itdk0304_rlinks 46,723.65 4.7413 1.020 1,092,348 109.34 1.023

DBLP 87,657.1 8.8196 1.020 8,623,459 862.44 1.020

roadNet 167,074.3 16.7218 1.019 18,824,559 1882.55 1.019

Table 3 shows results from LCA, LBFS, and our algorithm. It can be seen from Table 3 that our
algorithm outperforms LBFS in terms of efficiency and accuracy. In DBLP and roadNet, our algorithm
ran twice as fast as LBFS. Compared with LCA, our algorithm approximates more accurately but with
a slightly higher runtime. Moreover, parallelization improved the runtime by about 15% compared
with the latter which computed shortest paths sequentially.

Table 3. Results from LCA, LBFS and our algorithm.

Graph Our Algorithm LCA LBFS

Network Tq (ms) p Tq (ms) p Tq (ms) p

Email-Enron 1.1720 1.022 0.84 1.095 1.29 1.030

itdk0304_rlinks 4.7413 1.020 3.57 1.083 5.60 1.028

DBLP 8.8196 1.020 6.35 1.072 15.99 1.025

roadNet 16.7218 1.019 10.70 1.067 37.89 1.022

Algorithms 2020, 13, 36 11 of 12

From our experiments, we deduced that threshold t affects the efficiency and accuracy of our
algorithm. Table 4 shows the influence of threshold t. From Table 4, it can be seen that runtime
increases and path ratio decreases when threshold is increased. When there are more nodes at the top
level network, approximation is more accurate but requires more time for Dijkstra’s algorithm. When t
increases from 40 to 100, Tq also increases a little, but p improves significantly. When the threshold
value increases from 100 to 180, Tq increases sharply, but p remains nearly constant. We therefore set
the threshold value at 100 in order to obtain a good trade-off.

Table 4. Comparison of different thresholds.

Network
Threshold

Parameter 40 60 100 140 180

Email-Enron
Tq (ms) 0.46 0.661 1.170 2.021 3.875

p 1.03 1.024 1.02 1.02 1.02

itdk0304_rlinks
Tq (ms) 2.31 3.65 4.72 8.04 15.56

p 1.03 1.026 1.02 1.019 1.018

DBLP
Tq (ms) 5.49 7.521 8.78 17.214 36.820

p 1.03 1.022 1.02 1.018 1.018

roadNet
Tq (ms) 10.89 13.10 16.79 33.41 61.58

p 1.026 1.02 1.02 1.018 1.018

7. Conclusions

Based on hierarchical networks, we propose a parallel approximate shortest path algorithm
which is efficient and maintains high approximation accuracy on large scale networks. The algorithm
condenses central nodes and their neighbors into super nodes to iteratively construct higher level
networks until the scale of the top level meets a set threshold value. The algorithm approximates the
distances of the shortest paths in the original network by means of super nodes in the higher-level
network. The performance of our algorithm was tested on four real networks. Results from our tests
show that our algorithm has a runtime per query within a few milliseconds and at the same time
delivers high accuracy on large scale networks. Compared with other algorithms, our algorithm runs
twice as fast as LBFS and over 10 times faster than CDZ.

The proposed algorithm mainly focuses on undirected and unweighted networks. In the future,
we seek to focus on directed and weighted networks by exploring the approximate distance between a
node and its central node based on hierarchical networks. We will also consider an adaptive algorithm
for dynamic networks.

Author Contributions: Conceptualization, D.N.A.M.; Data curation, L.W.Y.; Investigation, D.N.A.M.; Software,
D.N.A.M. and L.W.Y.; Supervision, H.G.; Writing—original draft, D.N.A.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was partially supported by the National Natural Science Foundation of China
under Grant No. 61433014, by the National High Technology Research and Development Program under Grant
No. 2015AA7115089.

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2020, 13, 36 12 of 12

References

1. Stolfo, S.J.; Hershkop, S.; Wang, K.; Nimeskern, O.; Hu, C.W. Behavior profiling of email. In Proceedings
of the 1st NSF/NIJ Conference on Intelligence and Security Informatics, Tucson, AZ, USA, 2–3 June 2003;
pp. 74–90.

2. Schwarzkopf, Y.; Rákos, A.; Mukamel, D. Epidemic spreading in evolving networks. Phys. Rev. E 2020,
82, 036112. [CrossRef] [PubMed]

3. Yang, Y.B.; Li, N.; Zhang, Y. Networked data mining based on social network visualizations. J. Software 2008,
19, 1980–1994. [CrossRef]

4. Qiao, S.J.; Tang, C.J.; Peng, J.; Liu, W.; Wen, F.L.; Qiu, J.T. Mining key members of crime networks based on
personality trait simulation email analysis system. Chin. J. Comput. 2008, 31, 1795–1803. [CrossRef]

5. Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Network 1978, 1, 215–239.
6. Chow, E. A graph search heuristic for shortest distance paths. In Proceedings of the Twentieth National

Conference on Artificial Intelligence, Pittsburgh, PA, USA, 9–13 July 2005.
7. Rattigan, M.; Maier, M.J.; Jensen, D. Using structure indices for efficient approximation of network properties.

In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Philadelphia, PA, USA, 22–23 August 2006; Association for Computing Machinery: New York, NY,
USA, 2006; pp. 357–366.

8. Tang, J.T.; Wang, T.; Wang, J. Shortest Path Approximate Algorithm for Complex Network Analysis. J. Softw.
2011, 22, 2279–2290. [CrossRef]

9. Tretyakov, K.; Armas-Cervantes, A.; García-Bañuelos, L.; Vilo, J.; Dumas, M. Fast fully dynamic
landmark-based estimation of shortest path distances in very large graphs. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management (CIKM ’11), Glasgow, UK, 24–28
October 2011. [CrossRef]

10. Maleki, S.; Nguyen, D.; Lenharth, A.; Garzarán, M.; Padua, D.; Pingali, K. DSMR: A Parallel Algorithm for
Single-Source Shortest Path Problem. In Proceedings of the 2016 International Conference on Supercomputing
(ICS ’16), Istanbul, Turkey, 1–3 June 2016; pp. 1–14.

11. Hart, P.; Nilsson, N.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths.
IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [CrossRef]

12. Geisberger, R.; Sanders, P.; Schultes, D.; Delling, D. Contraction Hierarchies: Faster and Simpler Hierarchical
Routing in Road Networks. In International Workshop on Experimental and Efficient Algorithms; McGeoch, C.C.,
Ed.; Springer: Berlin, Germany, 2008.

13. Lanthier, M.; Nussbaum, D.; Sack, J.-R. Parallel implementation of geometric shortest path algorithms.
Parallel Comput. 2003, 29, 1445–1479. [CrossRef]

14. Klimmt, B.; Yang, Y. Introducing the Enron corpus. In Proceedings of the First Conference on Email and
Anti-Spam, Mountain View, CA, USA, 30–31 July 2004.

15. Broido, A. Internet topology: Connectivity of IP graphs. In Scalability and Traffic Control in IP Networks;
Fahmy, S., Park, K., Eds.; SPIE: San Francisco, CA, USA, 2001; pp. 172–187.

16. Ley, M.; Reuther, P. Maintaining an Online Bibliographical Database: The Problem of Data Quality. In
Proceedings of the Extraction et Gestion des Connaissances 2006 (EGC 2006), Lille, France, 17–20 January
2006; pp. 5–10.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

View publication statsView publication stats

http://dx.doi.org/10.1103/PhysRevE.82.036112
http://www.ncbi.nlm.nih.gov/pubmed/21230144
http://dx.doi.org/10.3724/SP.J.1001.2008.01980
http://dx.doi.org/10.3724/SP.J.1016.2008.01795
http://dx.doi.org/10.3724/SP.J.1001.2011.03924
http://dx.doi.org/10.1145/2063576.2063834
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1016/j.parco.2003.05.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.
https://www.researchgate.net/publication/339099200

	Introduction
	Construction of Hierarchical Networks
	Algorithm Based on the Hierarchy of Networks
	Parallelization
	Completeness, Soundness and Cost Optimality
	Sound and Completeness
	Optimality

	Experimental Results and Discussions
	Conclusions
	References

