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Abstract—Knowledge graph (KG) enhanced recommendation
has demonstrated improved performance in the recommendation
system (RecSys) and attracted considerable research interest.
Recently the literature has adopted neural graph networks
(GNNs) on the collaborative knowledge graph and built an end-
to-end KG-enhanced RecSys. However, the majority of these
approaches have three limitations: (1) treat the collaborative
knowledge graph as a homogeneous graph and overlook the
highly heterogeneous relationships among items, (2) lack of design
to explicitly leverage the rich side information, and (3) overlook
the rich knowledge in user preference.

To fill this gap, in this paper, we explore the rich, heterogeneous
relationship among items and propose a new KG-enhanced
recommendation model called Collaborative Meta-Knowledge
Enhanced Recommender System (MetaKRec). In particular, we
focus on modeling the rich, heterogeneous semantic relationships
among items and construct several collaborative Meta-KGs to
explicitly depict the relatedness of the items under the guidance of
meta-knowledge. In addition to the knowledge obtained from KG,
we leverage user knowledge that extracts from user preference
to construct the Meta-KGs. The constructed Meta-KGs can
capture the knowledge from both the knowledge graph and user
preference. Furthermore. we utilize a light convolution encoder
to recursively integrate the item relationship in each collabora-
tive Meta-KGs. This scheme allows us to explicitly gather the
heterogeneous semantic relationships among items and encode
them into the representations of items. In addition, we propose
channel attention to fuse the item and user representations from
different Meta-KGs. Extensive experiments are conducted on four
real-world benchmark datasets, demonstrating significant gains
over the state-of-the-art baselines on both regular and cold-start
recommendation settings.

I. INTRODUCTION

Knowledge graph (KG) enhanced recommendation is be-
coming increasingly popular due to its significant performance
gains over traditional recommendation. The benefit mainly re-
sults from better user/item representation learned with knowl-
edge graph side information, since that side information is
able to alleviate cold-start issues in the recommendation. We
illustrate the book recommendation task as a toy example in
Figure 1: Tom bought the books “Harry Potter” and “The Old
Man and The SEA”. Without the knowledge graph informa-
tion, it is not clear if “Hemingway: Life and Death of a Giant”
should be recommended to Tom. By taking the information in

∗The first two authors contributed equally.

the knowledge graph, we know that “Hemingway: Life and
Death of a Giant” depict the life of “Ernest Hemingway”
who authors the “The Old Man and The SEA”. We can
recommend “Hemingway: Life and Death of a Giant” to Tom
based because he may be interested in the life of “Ernest
Hemingway”. In addition, taking the KG into consideration
also brings explainability, for example, the reason “Harry Pot-
ter” and “Fantastic Beasts” are similar is that they are written
by the same author. Therefore study Knowledge graph (KG)
enhanced recommendation is a nontrivial research question.

The key to KG-enhanced recommendation is to effectively
incorporate the KG-side information for learning qualitative
user/item representation. Existing works can be classified into
two categories: feature-engineered approaches and end-to-
end approaches. Feature-engineered approaches benefit from
prior knowledge learned from analytic work and explicitly
model the KG side information. In earlier research [1]–
[3], KG triplets are used to create embeddings, which are
then used to enrich item representations by treating them
as prior or content knowledge. To better characterization
of user-item connections, several follow-up research [4]–[6]
extend the interactions with multi-hop edges from user to
item. However, feature-engineered approaches usually require
heavy human efforts to obtain good features. On the other
hand, the end-to-end approaches [7]–[10] aim to implicitly
model the KG side information by building end-to-end trained
graph neural networks (GNNs) [11]–[13] on the constructed
Collaborative Knowledge Graph (CKG). The basic idea is
to utilize the information aggregation strategy, which can
successfully capture multi-hop structures and encode them into
representations. However, the majority of these approaches
have some limitations: (1) treat the collaborative knowledge
graph as a homogeneous graph and overlook the highly
heterogeneous relationship among items; (2) lack of design
to explicitly leverage the rich side information. (3) overlook
the rich knowledge in user preference. Thus it requires finding
a solution that can overcome these limitations.

The collaborative Knowledge Graph (CKG) contains abun-
dant heterogeneous relationships between items. Two items
can be linked together through different relationships, provid-
ing fruitful information to enhance the recommender system.
An illustration is shown in Figure 1. Similar items can be
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linked to the same entity by different kinds of relationships,
e.g., we can observe two triples: (“Old Man and The Sea”,
“written by”, “Ernest Hemingway”) and (“Ernest Heming-
way”,“Protagonist in”,“Hemingway: Life and Death of a Gi-
ant”). The two books are linked to “Hemingway” by different
relationships. Users who purchased “Old Man and The Sea”
will likely be interested in “Hemingway: Life and Death of a
Giant” because it depicts the life of the author of “Old Man
and The Sea”. Two items that share the same relationship
with one entity tend to be similar. E.g., the book “Harry
Potter” and “Fantastic Beasts” are both linked to the fantasy
category. Tom, who purchased “Harry Potter”, is also likely
to be interested in “Fantastic Beasts” which belongs to the
same category. Items can also be similar if they share similar
semantic information over the knowledge graph even if they
are not directly linked, e.g., “Old Man and The Sea” does not
have a link to “Harry Potter”. But they are also similar in the
sense that they are both the author’s most popular books. The
unlinked entity similarity can be captured by the knowledge
graph embedding method. Item similarity can also be revealed
by users’ co-purchase behavior. E.g., Eva may be interested
in “Harry Potter” because it is co-purchased with “Fantastic
Beasts” by Jane. Thus, we can find similar items by the high
co-purchase similarity or Top K co-purchased items. We can
also alleviate the cold-start problem from the relational links
in the knowledge graph. E.g., we can recommend the non-
interacted “Hemingway: Life and Death of a Giant” to Tom
because it shows the life of the author of “Old Man and
The Sea”. Thus, it requires incorporating these heterogeneous
relationships into the representation of learning of the items.

Based on the above motivation, we propose the Collabora-
tive Meta-Knowledge Graph Enhanced Recommender System
(MetaKRec ), a novel KG-enhanced recommendation model
that explores the rich heterogeneity link between items. To
represent the relatedness of the items under the guidance of
the meta-graph, we build a variety of collaborative Meta-
KGs with a specific emphasis on modeling the rich, diverse
semantic connections among items. Additionally, we develop
a simple convolution encoder to recursively incorporate the
item connection in every shared Meta-KG. With the help
of this technique, we can explicitly collect and encode the
many semantic links between things. We also propose channel
attention to combine the user and item representations from
several Meta-KGs. Extensive experiments on four real-world
benchmark datasets show considerable improvements (to be
added) over the state-of-the-art baselines for both regular
and cold-start recommendation settings. We open sourced
MetaKRec at https://github.com/YangLiangwei/MetaKRec.

The key contributions are summarized as follows:
• We first put forward Collaborative Meta-Knowledge

Graphs to explicitly encode prior Meta-knowledge as
edges between items. It is flexible to transform from both
knowledge graphs and historical interactions.

• We propose channel attention that can fuse information
from different Collaborative Meta-Knowledge Graphs. It
is effective to achieve better performance by combining
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Fig. 1: Illustative example on knowledge graph enhanced
recommender system

different Collaborative Meta-Knowledge Graphs.
• We propose MetaKRec , and validate its effectiveness on

4 real-world datasets. It achieves the best performance
under both normal and cold-start settings.

II. PRELIMINARIES

This section gives the required preliminaries for MetaKRec
, including the problem formulation and graph neural network.

A. Problem Formulation

For a knowledge graph enhanced recommender system, we
have a set of users U = {u1, u2, ..., u|U|}, a set of items I =
{i1, i2, ..., i|I|}, and a set of entities E = {e1, e2, ..., e|E|}.
Historical user-item interactions are represented as a user-item
bipartite graph Grec = {(u, yui, i)|u ∈ U , i ∈ I}, where yui =
1 if u has purchased i, otherwise yui = 0. Besides Grec, we
also have a knowledge graph Gkg as side information for items.
The knowledge graph is typically formed by entities E and the
relationships R among them. Gkg is represented by subject-
property-object triple facts [14]: {(h, r, t)|h, t ∈ E , r ∈ R},
where each triple represents the relation between h and t is r.

Collaborative Knowledge Graph G [7] is built by unifying
Grec and Gkg . Firstly, we set the item-entity alignment function
f(i) = e that maps item i as entity e in the knowledge graph.
Then user-item interaction (u, yui, i) ∈ Grec is transformed
into two triples (u, Interact, f(i)) and (f(i), Interacted by, u).
Based on the previous alignment, the collaborative knowledge
graph is represented by G = {(h, r, t)|h, t ∈ U ∪ I ∪ E , r ∈
R∪ {Interact, Interacted by}}. Then the task is formulated to
predict the adoption probability ŷui given G that contains both
historical interactions and the knowledge graph.

B. Graph Neural Network

Graph neural network (GNN) is a deep learning method
applied to graph-structured data. It has been tested to be
effective in a wide range of graph-related tasks such as
protein function prediction [15], group identification [16] as
well as recommender system [17]–[19]. GNN is based on

https://github.com/YangLiangwei/MetaKRec
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Fig. 2: Framework of MetaKRec . The collaborative KG is fed into the Collaborative Meta KG Construction module to generate
collaborative meta-kgs based on meta-knowledge. User/item embedding for each collaborative meta-kgs is then obtained by
Light Graph Convolution. The Channel Attention module is finally used to fuse information over all embedding tables.

the homophily assumption [20] on graphs. It indicates nodes
connected in a graph are similar to each other. GNN models
homophily by directly aggregating embedding from neighbors
to the center neighbor, which is formulated as:

e(l+1)
u = e(l)u ⊕ AGG(l+1)({e(l)i | i ∈ Nu}), (1)

where e
(l)
u is node u’s embedding in l-th layer, Nu is u’s

neighbors, AGG(l)(·) aggregates neighbors’ embedding into
a single vector in layer l, and ⊕ is the function to combine
neighborhood representation and the center node’s embedding.
Different selection of AGG(l)(·) and ⊕ leads to different kinds
of GNN layers, such as GCN [21], GAT [22], and GIN [23].

III. METHOD

This section presents the proposed MetaKRec , which
includes 4 parts. 1) Collaborative Meta-KG construction based
on Gkg . 2) Graph convolution on the Collaborative Meta-KGs.
3) Channel attention module aggregating embedding learned
from different meta-kg channels, and 4) Prediction module to
predict the probability based on learned embedding. The main
framework is also shown in Fig. 2.

A. Collaborative Meta-KG Construction

Directly enhancing the recommender system by the original
collaborative knowledge graph G has two drawbacks. 1) The
edges between items and entities are still sparse. Message-
passing on the sparse graph is neither efficient nor effective.
2) The learning of entity embedding burdens the training pro-
cedure. To tackle the two drawbacks, we propose to construct
Collaborative Meta-KG (CMKG) Gcmkg from the original
collaborative knowledge graph G, which is defined as:

Definition 3.1: Collaborative Meta-KG, Gcmkg =
{(u, i)|u ∈ U , i ∈ I} ∪ {(i, i∗)|i, i∗ ∈ I}, where (i, i∗)
indicates the meta-edges between items built from knowledge
graph. Each Gcmkg contains the historical user-item inter-
actions and the specific item similarity extracted from the
knowledge graph.

Gcmkg is constructed from G. Based on explicit meta-
knowledge, we encode the knowledge graph as multiple
Gcmkg . In this way, we drop the entities in KG and encode
the KG information as edges directly between items in Gcmkg .
This leads to denser interactions and enables a direct message-
passing between items. As shown in Fig. 3, we generate 3
Gcmkg from the knowledge graph:

• Gkg1cmkg: Two items are similar when connected to the same

entity. E.g., we transform (i3
R1

−− e3
R2

−− i4) relation in
G to a direct edge (i3 −−i4) in Gkg1cmkg .

• Gkg2cmkg: Two items are more similar if they are connected
to the same entity under the same relation. E.g., we

transform (i1
R1

−− e1
R1

−− i4) relation in G to a direct
edge (i1 −−i4) in Gkg2cmkg .

• Gkg3cmkg: Items are similar if they share similar semantic
meanings in the knowledge graph. To this end, we obtain
the entities embedding by training a TransE [24] model
on the knowledge graph. Then we build edges between
two items if the cosine similarity of their TransE em-
bedding is larger than a threshold t. E.g., we build an
edge between i2 and i3 because their cosine similarity
on TransE embedding is larger than a threshold t.

We can also generate Gcmkg from the user-item interactions.
MetaKRec generates 2 Gcmkg based on co-purchase behavior:

• Guk1cmkg: Items are similar if they share similar common
users. We compute the Jaccard similarity between item
pairs based on interacted users. Item’s user neighborhood
is more similar with a higher Jaccard similarity. E.g., we
construct an edge between i1 − −i2 in Guk1cmkg because
their Jaccard similarity is larger than t.

• Guk2cmkg: Based on Jaccard similarity, we construct the edge
between one item and its Top K most similar items. E.g.,
we construct i3−−i4 in Guk2cmkg because i4 is in i3’s Top
K similar items.
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Fig. 3: Collaborative Meta-KG Construction.

All Gcmkg share the historical user-item interactions and
differ from the edges between items. Different Gcmkg utilizes
different information sources and Meta Knowledge. Gkg1cmkg ,
Gkg2cmkg , Gkg3cmkg are built based on knowledge graph. Guk1cmkg

and Guk2cmkg are built based on user-item interaction graph. The
Gcmkg can be built based on different kinds of Meta Knowl-
edge. In MetaKRec , we illustrate the building method in 5
differently. It is flexible enough to contain more information
by transforming the Meta Knowledge into item similarities.

B. Light Graph Convolution Encoder

Light graph convolution [25] (LGC) has been shown effec-
tive on the user-item bipartite graph. The direct embedding
passing between users and items explicitly aggregates the
collaborative filtering signal. MetaKRec applies LGC on each
generated Gcmkg in Section III-A.

The embedding layer is built before the convolution to
represent the users and items. The embedding layer is a look-
up table that maps user/item ID to a dense vector:

E =
(
e1, e2, . . . , e|U|+|I|

)
, (2)

where e ∈ Rd is the d-dimensional vector to represent a
user/item. The embedding indexed from the loop-up table is
before the graph convolution. Then they are fed into the light
graph convolution to aggregate neighbor’s information:

en =
∑
v∈Nn

1√
|Nn|

√
|Nv|

ev, (3)

where n, v can represent both user and item in Gcmkg , Nn is
the neighbor set of node n. The LGC can be stacked in several
layers, and we omit the notation for layers for simplicity. We
perform the convolution separately for each Gcmkg . After the

convolution, we have [e
Gkg1
cmkg

n , e
Gkg2
cmkg

n , e
Gkg3
cmkg

n , e
Guk1
cmkg

n , e
Guk2
cmkg

n ]
for node n.

C. Channel Attention

Each Gcmkg is one channel for model to encode KG
information. Different channels encode node embedding from
different Gcmkg , and contain different information. The chan-
nel attention module is a readout function to aggregate the
embedding learned on different Gcmkg:

en = Readout([e
Gkg1
cmkg

n , e
Gkg2
cmkg

n , e
Gkg3
cmkg

n , e
Guk1
cmkg

n , e
Guk2
cmkg

n ]) (4)

=
∑
g

ageG
g
cmkg , (5)

where ag is the attention weight learned for Ggcmkg , and is
calculated by:

ag =
exp(〈WAtt, e

Gg
cmkg 〉)∑

g′ exp(〈WAtt, e
Gg′
cmkg 〉)

(6)

where WAtt ∈ Rd is the parameter to compute attention
weight. The channel attention module learns different weights
for different channels to optimize the loss function. It can ef-
fectively combine information extracted from different Gcmkg .

D. Prediction

The aggregated embedding for u and i contain information
from different Gcmkg , and we compute the dot product as the
probability that u will purchase i:

ŷu,i = eu · ei. (7)

We randomly sample one negative item over the whole item
set for each positive interaction and compute the Bayesian
Personalized Ranking (BPR) loss [26] for optimization:

L = −
∑

(u,i)∈Grec,j∈I\Nu

log σ(ŷu,i − ŷu,j) + λ||Θ||22, (8)

where j is the randomly sampled negative item, λ is the regu-
larization hyper-parameter, and Θ contains all the parameters.



TABLE I: Model Size Comparison

Model Parameters
KGAT (|U|+ |I|+ |E|+ (1 + d)|R|+ dl + l)d
KGIN (|U|+ |I|+ |E|+ |R|)d+ |R||P|

MetaKRec (|U|+ |I|)d

E. Model Parameter Analysis

We compare the parameter size of MetaKRec with KG-
enhanced recommendation models. The comparison is shown
in Table I. U , I, E ,R represent the user, item, entity and
relation set, respectively. P is the intent set in KGIN. l is the
number of layers and d is the embedding size. MetaKRec has
the fewest parameters, and it only needs the user and item em-
bedding table. All the other KG-enhanced methods need much
more parameters to represent the entities. MetaKRec abandons
the redundant design of entity embedding and enables direct
aggregation between items. As shown in Table III, MetaKRec
achieves the best performance with the fewest parameters. It
testifies the MetaKRec is effective and efficient.

IV. EXPERIMENT

Extensive experiments are conducted on 4 real-world
datasets to answer the following research questions (RQs):
• RQ1: Is MetaKRec effective in knowledge graph en-

hanced recommendation?
• RQ2: What are the results on different Collaborative

Meta-KGs?
• RQ3: Can MetaKRec cope with the cold-start recommen-

dation by considering more side information?
• RQ4: What is the influence of different experiment

setting on MetaKRec ?

A. Experiment Setting

1) Datasets: To test the performance of MetaKRec , we
select four datasets with knowledge graphs as side information
during the evaluation. The data statistics are shown in Table II.
The size of four datasets varies from small to large, which are
introduced as follows:
• Music [27]: It contains musician listening information of

the Last.fm online platform 1.
• Book [27]: It contains the rating from users to books of

the Book-Crossing platform 2.
• Amazon [28]: It is a widely used dataset for studying

e-commerce recommendations from Amazon platform 3.
To ensure the data quality, 10-core setting is adopted, i.e.,
each user/item has at least 10 interactions.

• Yelp [28]: It is a dataset from Yelp platform 4, where
users can check in and rate local businesses such as
restaurants and bars. We also apply 10-core setting to
ensure data quality.

All the datasets contain both user-item interactions and the
related knowledge graph.

1https://www.last.fm/
2https://www.bookcrossing.com/
3https://www.amazon.com/
4https://www.yelp.com/

TABLE II: Statistics of the Datasets

Dataset Music Book Amazon Yelp
Users 1,872 17,860 45,113 15,959
Items 3,846 14,967 24,695 43,214
Interactions 42,348 139,746 426,503 341,211
Density 0.59% 0.05% 0.038% 0.049%
Entities 3,846 77,891 113,269 134,175
Relations 60 25 39 42

2) Baselines: To make a thorough comparison, different
kinds of methods are selected as baselines:

• FM [29]: It is a supervised learning algorithm based on
linear regression and matrix factorization.

• FM-KG [7]: It adds the knowledge graph entity con-
nection vector to enrich the item feature before the
factorization machine.

• GCN [21]: It is the most widely used graph neural
network. It makes a direct GCN convolution on the user-
item bipartite graph to obtain node embedding.

• SGConv [30]: It simplifies the convolution of multiple
GCN layers by multiplying the graph Laplacian matrix.

• LightGCN [25]: It is the state-of-the-art recommender
method. By removing the linear transform and non-linear
activation, LightGCN achieves faster training and higher
accuracy.

• KGAT [7]: It is a graph neural network-based method
that utilizes the knowledge graph as edges between items
and entities. It trains directly on the knowledge in an
end-to-end fashion.

• KGIN [8]: It models the intent behind user-item interac-
tions by combining different relations in the knowledge
graph. It also designs a new information aggregation
scheme to integrate the related sequences of long-range
connectivity.

FM and FM-KG are two traditional methods. GCN, SG-
Conv, and LightGCN are GNN-based methods. KGAT and
KGIN are two knowledge graph-enhanced methods.

3) Metrics: To measure MetaKRec ’s performance, Recall
and NDCG are adopted as the metrics. Recall measures the
fraction of retrieved users’ truly interested items, and NDCG
measures the model’s ranking quality of the retrieved items.
For each metric, we compare the results on top-10 and top-20
recommendations.

4) Hyper-parameter Setting: We randomly split the
datasets into training (80%), validation (10%), and test (10%).
We tune hyper-parameters on the validation set and report
experimental results on the test set. Adam is used as the
optimizer. For all methods, we tune the learning rate and
weight-decay within {0.1, 0.05, 0.01, 0.005, 0.001}, {1e-1, 1e-
2, 1e-3, 1e-4, 1e-5, 1e-6}, respectively. For a fair comparison,
we fix the embedding size as 4 and the negative sample rate
as 1 for all methods. To avoid overfitting, we early stop the
training if the model’s performance on the validation set does
not improve in 10 epochs.



TABLE III: Overall comparison, the best and second-best results are in bold and underlined, respectively

Dataset Metric FM FM-KG GCN SGConv LightGCN KGAT KGIN MetaKRec Improv.

Music

R@10 0.04805 0.11771 0.15700 0.17326 0.18966 0.17248 0.16244 0.20809 9.72%
R@20 0.09051 0.18290 0.22449 0.24911 0.27453 0.25043 0.26026 0.29053 5.83%
N@10 0.03658 0.07741 0.10864 0.12299 0.13635 0.11557 0.10729 0.14698 7.80%
N@20 0.05197 0.09916 0.13042 0.14768 0.16422 0.14220 0.13856 0.17433 6.16%

Book

R@10 0.05522 0.06017 0.05914 0.06146 0.06302 0.04329 0.04394 0.07137 2.63%
R@20 0.06531 0.07341 0.07775 0.07971 0.09120 0.05166 0.06033 0.09987 9.51%
N@10 0.04274 0.04993 0.05858 0.04539 0.06518 0.04002 0.04146 0.06842 4.97%
N@20 0.04606 0.05453 0.06553 0.05343 0.07623 0.04396 0.04735 0.07962 4.45%

Amazon

R@10 0.00760 0.03540 0.04393 0.04907 0.04379 0.03459 0.04581 0.05106 4.06%
R@20 0.01027 0.06030 0.07176 0.07894 0.06804 0.06129 0.07306 0.08618 9.17%
N@10 0.00582 0.02200 0.02883 0.03420 0.02867 0.02252 0.02950 0.03466 1.35%
N@20 0.00812 0.03070 0.03844 0.04470 0.03717 0.03149 0.03908 0.04645 3.91%

Yelp

R@10 0.00400 0.01067 0.02468 0.02524 0.02465 0.02402 0.02034 0.02830 12.12%
R@20 0.00668 0.01777 0.04339 0.04291 0.04510 0.03749 0.03687 0.04884 8.29%
N@10 0.00488 0.00945 0.02619 0.02596 0.02621 0.02247 0.01994 0.02839 8.32%
N@20 0.0063 0.01322 0.03579 0.03552 0.03676 0.03001 0.02872 0.03880 8.41%
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Fig. 4: Recall score of different methods under cold-start setting
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Fig. 5: NDCG score of different methods under cold-start setting

TABLE IV: Experiment Results of different Collaborative
Meta-KGs (Music)

ID R@10 R@20 N@10 N@20
Gkg1cmkg 0.17464 0.25524 0.12244 0.14927

Gkg2cmkg 0.17831 0.25015 0.12228 0.14626

Gkg3cmkg 0.18958 0.27885 0.13087 0.16054
Guk1cmkg 0.17910 0.24578 0.12619 0.14930
Guk2cmkg 0.16501 0.23598 0.11773 0.14127

MetaKRec 0.20810 0.29053 0.14699 0.17433
Improv. 9.77% 4.19% 12.32% 8.59%

B. Overall Experiment (RQ1)

The overall comparison of the 4 datasets is shown in
Table III. We can have the following observations:
• MetaKRec consistently outperforms the runner-up on all

datasets. The improvement is over 5% on all Music and

TABLE V: Experiment Results of different Collaborative
Meta-KGs (Book)

ID R@10 R@20 N@10 N@20
Gkg1cmkg 0.05356 0.06893 0.05493 0.06167

Gkg2cmkg 0.05356 0.06893 0.05494 0.06167

Gkg3cmkg 0.05917 0.08145 0.06364 0.07209
Guk1cmkg 0.05356 0.06888 0.05491 0.06157
Guk2cmkg 0.05432 0.06889 0.05134 0.05893

MetaKRec 0.07138 0.09988 0.06843 0.07962
Improv. 20.64% 22.63% 7.53% 10.44%

Yelp datasets metrics. The huge improvement validates
the effectiveness of our model.

• MetaKRec always beats LightGCN by a large margin.
As MetaKRec and LightGCN use the same Light Graph
Convolution layer, the improvement is largely brought by



TABLE VI: Experiment Results of different Collaborative
Meta-KGs (Amazon)

ID R@10 R@20 N@10 N@20
Gkg1cmkg 0.03940 0.06911 0.02637 0.03650

Gkg2cmkg 0.04184 0.06973 0.02699 0.03662

Gkg3cmkg 0.03762 0.06676 0.02535 0.03522
Guk1cmkg 0.03739 0.06679 0.02463 0.03438
Guk2cmkg 0.04050 0.06883 0.02798 0.03762

MetaKRec 0.05106 0.08619 0.03467 0.04646
Improv. 22.04% 23.61% 23.91% 23.50%

TABLE VII: Experiment Results of different Collaborative
Meta-KGs (Yelp)

ID R@10 R@20 N@10 N@20
Gkg1cmkg 0.02280 0.04130 0.02366 0.03314

Gkg2cmkg 0.02672 0.04369 0.02654 0.03546

Gkg3cmkg 0.02703 0.04316 0.02790 0.03665
Guk1cmkg 0.02570 0.04423 0.02657 0.03603
Guk2cmkg 0.02731 0.04465 0.02663 0.03610

MetaKRec 0.02831 0.04885 0.02840 0.03880
Improv. 3.66% 9.41% 1.79% 5.87%

the KG information. It shows MetaKRec greatly enhances
the recommender system by KG side information.

• KG-enhanced recommender systems (KGAT, KGIN) do
not necessarily perform better than models that utilize
only user-item bipartite graphs (SGConv, LightGCN). It
indicates the collaborative filtering signal on the bipartite
graph is most important to achieve accurate recommen-
dations while the knowledge graph is sided information.

• Among all the KG enhanced methods, MetaKRec always
achieves the best performance. It reveals that collab-
orative meta-kg graphs can effectively transform the
knowledge graph as side information to enhance the
recommender system.

C. Evaluation on different Collaborative Meta-KGs (RQ2)

We then test the model’s performance on different Col-
laborative Meta-KGs. Experiment results on 4 datasets are
illustrated in Tables IV, V, VI, VII respectively. From the
4 tables, we can have the following observations. 1) The
combined model that utilizes all the Collaborative Meta-KGs
always achieves the best performance. The improvement on
the Amazon dataset is over 20% compared with the runner-up.
It shows different Collaborative Meta-KGs acquire different
information and can complement each other to achieve a better
performance in a joint effort. 2) The performance of each
Collaborative Meta-KG does not deteriorate much compared
with the joint model. It reveals the collaborative filtering signal
between user-item interactions is the most important during
building an effective recommender system. The knowledge
graph can be utilized as side information to enhance the
recommendation performance.

D. Cold-start Experiment (RQ3)

Cold-start is a severe problem in recommender systems.
Without enough user-item interactions, it is difficult to ob-

tain an informative representation. This experiment evaluates
the model’s performance under the cold-start setting, where
we randomly keep only 1 user interaction for each item
in the training set. Here we select Recall and NDCG @
{10, 20, 40, 80} as evaluation metrics.

Experiment results on Recall are shown in Fig. 4, and
results on NDCG are shown in Fig. 5. From the results, we
can observe that MetaKRec achieves the best performance on
both Recall and NDCG over all datasets. Compared with the
runner-up, the improvement of MetaKRec on Yelp dataset
is over 30%. On Amazon and Music datasets, MetaKRec
surpasses the second best over 15%. The lowest improvement
on Book dataset is more than 10%. The huge improvement
on all datasets validates MetaKRec can effectively utilize
knowledge graph as side information to cope with the cold-
start recommendation problem.

We can also observe that the performance of KGAT and
KGIN are even worse than the simple GCN model under the
cold-start setting. It shows knowledge graph can not always
provide informative information for cold-start items. The com-
plex design of KGAT and KGIN do not contribute to better
performance. With fewer parameters, MetaKRec achieves very
huge improvement over other KG-enhanced models.

E. Hyper-parameter Study (RQ4)

In this experiment, we explore the influence of different
experiment settings on MetaKRec . Two influential hyper-
parameters are studied: 1) The number of graph convolution
layers, and 2) Channel combination methods.

1) Number of convolution layers: In this experiment, we
keep all the other hyper-parameters fixed, and observe the
performance change with the increasing of convolution layer
numbers. Experiment results on Recall@10 are shown in
Fig. 6 and NDCG@10 are shown in Fig. 7. We can observe
that both the metrics on 4 datasets show a downward trend.
Although there are occasional increases, MetaKRec always
achieves the best performance when the number of layers
is 1. MetaKRec transforms the knowledge graph into direct
edges between items, which enables a direct message-passing
between item pairs by using just 1 single graph convolution.
With more layers, the over-smoothing problem [31] exacer-
bates in MetaKRec because it builds lots of edges between
items. One node will be smoothed by much more neighbors
with the constructed edges. The results suggest we do not need
to increase the complexity by stacking more convolution layers
when utilizing MetaKRec . A simple 1 layer convolution can
achieve the best performance.

2) Channel combination methods: This experiment tests the
channel combination methods. We keep all the other hyper-
parameters fixed and only change the channel attention module
to see the influence on performance. We show the changes
on Recall@10 in Fig. 8 and NDCG@10 in Fig. 9. In both
figures, “Mean” indicates we combine different embedding
tables by a mean pooling layer, and “Concat” indicates we
first concat all the embedding tables and transform them to
the previous embedding size by a linear layer. From the
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experiment results, we can observe that “Attention” always
achieves the best performance except for the NDCG@10
on Yelp dataset. On Music and Amazon dataset, “Attention”
surpasses the other two methods by a large margin. It validates
the channel attention design in MetaKRec , and the attention
can effectively fuse the embedding table learned from different
Collaborative Meta-KGs.

V. RELATED WORK

In this section, we introduce the related work of MetaKRec
, which includes Meta Path/Graph learning and KG enhanced
recommender system.

A. Meta Path/Graph Learning

Meta Path/Graph is a kind of powerful learning method on
graph data, and it has attracted much research attention in
recent years [32], [33]. To evaluate the relevance of different-
typed objects, Shi et al. [34] proposed HeteSim to measure the
relevance of any object pair under an arbitrary meta path. Meta
path-based methods are widely used on graph embedding.
Meta-path2vec [35] designed a meta-path-based random walk
and utilized skip-gram to perform graph embedding. Sun et
al. [36] proposed meta-graph-based network embedding mod-
els, which simultaneously considered the hidden relations of
all meta information of a meta-graph. Qiu et al. [37] provided
the theoretical connections between skip-gram-based network
embedding algorithms and the theory of graph Laplacian and
presented the NetMF method as well as its approximation
algorithm for computing network embedding. Fan et al. [38]
proposed a HIN embedding model metagraph2vec to learn
the low-dimensional representations for the nodes in HIN,
where both the HIN structures and semantics are maximally
preserved for malware detection. Fan et al. [39] also introduced
an attributed heterogeneous information network (AHIN) to

model the rich semantics and complex relations among multi-
typed entities and designed different metagraphs to formu-
late the relatedness between buyers and products. The HeCo
proposed by Wang et al. [40] employed network schema
and meta-path views to collaboratively supervise each other,
moreover, a view mask mechanism was designed to further
enhance the contrastive performance.

Unlike previous works, we design meta graphs, particularly
for knowledge graph enhanced recommendation. We propose
Collaborative Meta Knowledge Graph that explicitly utilizes
information from both knowledge graph and user-item interac-
tions. The construction method is also not limited to paths or
graph structures, which is flexible enough to encode different
kinds of prior knowledge.

B. KG Enhanced Recommender System

KG contains rich entity and relationship information, which
can be used as auxiliary information to supplement the re-
lationship between users and items, thus making the recom-
mender system more effective, accurate, and explainable [41].
KG enhanced recommender system also receives much re-
search attention [42]–[44]. KTUP [2] and CFKG [1] jointly
learn recommendation and knowledge graph completion tasks
by the shared embedding table. KGCN [27] is the pioneering
work to take the advantage of GNN over knowledge graph to
obtain an informative item embedding table. KGNN-LS [45]
learns the influence of the knowledge graph on users and
transforms KG into a user-specific weighted graph before
GNN aggregation. Wang et al. [7] creatively propose the
KGAT method, using two designs of recursive embedding
propagation and attention-based aggregation to fully use the
high-order information in KG to achieve the purpose of
enhanced recommendation. Then they propose the KGIN [8]
method, which provides a new aggregation scheme to extract
useful information about user intent and encode them into user
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and item representations. ATBRG [46] generates subgraphs
for specific user-item pairs and uses a the relation-aware
extractor layer to extract informative relations for aggregation.
DSKReG [47] samples on useful relations over knowledge
graph by gumble softmax, and reconstructs a preference aware
aggregation graph before GNN.

All previous researches rely on models to learn informative
information from the complex knowledge graph with multiple
kinds of relations. Unlike them, MetaKRec utilizes prior
meta knowledge over knowledge graphs to construct different
meta graphs to enhance recommendation. The reliable human-
defined meta-knowledge decreases the noise and enables a
simple model to achieve the best performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we research utilizing meta knowledge to
enhance the KG-based recommender system. We propose
constructing Collaborative Meta Knowledge Graphs to use
prior meta-knowledge on the knowledge graphs and user-
item interaction graphs. We make the construction based on
different kinds of meta-knowledge and present MetaKRec that
can effectively utilize knowledge graph to enhance recommen-
dation. Experiment results on 4 real-world datasets validate the
effectiveness of MetaKRec . Cold-start experiment also shows
MetaKRec can effectively utilize knowledge graph information
to alleviate the cold-start problem. This work shows that the
explicit usage of prior meta knowledge can benefit the KG-
enhanced recommendation.

As for future work, we point out 2 research directions. 1)
Research on fusing prior meta-knowledge on other models.
It is better to use meta knowledge to provide explicit signals
when the relations are too complex for the model to learn. 2)
Exploring how to construct explicit meta knowledge into deep
learning models. In this paper, we propose the construction of
Collaborative Meta-KG to encode meta-knowledge as edges

between items. Researchers can also explore other methods to
encode the meta knowledge in different scenarios.
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