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ABSTRACT
Collaborative filtering-based recommender systems (RecSys) rely
on learning representations for users and items to predict prefer-
ences accurately. Representation learning on the hypersphere is a
promising approach due to its desirable properties, such as align-
ment and uniformity. However, the sparsity issue arises when it en-
counters RecSys. To address this issue, we propose a novel approach,
graph-based alignment and uniformity (GraphAU), that explicitly
considers high-order connectivities in the user-item bipartite graph.
GraphAU aligns the user/item embedding to the dense vector repre-
sentations of high-order neighbors using a neighborhood aggrega-
tor, eliminating the need to compute the burdensome alignment to
high-order neighborhoods individually. To address the discrepancy
in alignment losses,GraphAU includes a layer-wise alignment pool-
ing module to integrate alignment losses layer-wise. Experiments
on four datasets show that GraphAU significantly alleviates the
sparsity issue and achieves state-of-the-art performance. We open-
source GraphAU at https://github.com/YangLiangwei/GraphAU.
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Figure 1: The scalability problem of DirectAU, and the effi-
ciency of GraphAU. GraphAU nearly keeps constant Train-
ing time (line plot) with High-order Edge Number (Bar Plot).

1 INTRODUCTION
In regard to the overwhelming online information [17], recom-
mender systems (RecSys) assist users effortlessly discovering items
that align with their interests [6, 15, 30, 32]. The core of most exist-
ing RecSys is learning representations for users and items. By em-
bedding past user-item interactions into dense vectors [33], RecSys
create sophisticated representations of users and items that capture
the nuances of their preferences and characteristics. The effective-
ness of learning user/item representations is heavily influenced by
the choice of loss functions [1, 11, 20, 22, 23, 31]. Recent studies ex-
plain that the desirable performance of contrastive loss results from
the alignment of positive pairs and uniformity of data [4, 19, 27].
This observation motivates the development of an innovative tech-
nique, Direct Alignment and Uniformity (DirectAU) [25] in the
field of RecSys. DirectAU employs alignment loss to improve the
normalized element-wise similarity between a user’s representation
and those of the items he/she has interacted with. It also adopts
uniformity loss to ensure that the user and item representations are
evenly distributed and inherently distinguishable from each other.

Despite the effectiveness, we contend that directly utilizing align-
ment between user-item pairs, DirectAU neglects the critical data
sparsity [7] issue in RecSys. The alignment signals between users
and his/her direct interacted items are rather sparse, which hin-
ders the effectiveness of alignment objective. Inspired by existing
works [2, 9, 14, 21, 26, 28, 29, 34, 35] that leverage high-order con-
nections in user-item bipartite graph, we propose to devise a novel
GraphAU to enhance current alignment loss. The direct alignment
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Figure 2: An example of computing alignment loss between 𝑢1 and 𝑖1 considering neighborhoods within 3 hops. GraphAU
applies 3 Aggregators on the user-item bipartite graph to obtain a dense neighborhoods representation of 𝑢1/𝑖1 within hops
from 1 to 3. The output of each Aggregator is explicitly aligned with 𝑢1 or 𝑖1 correspondingly before the pooling module.

of high-order connectivities encounters two primary challenges.
Firstly, the scalability of high-order connections poses a signifi-
cant hurdle. As shown in Figure 1, the number of high-order edges
increases exponentially with more hops, and the training time of Di-
rectAU also increases exponentially. Consequently, direct alignment
of all high-order edges can be impractical and time-consuming. Sec-
ondly, there is a discrepancy in different orders. Alignment losses
from different hop neighborhoods exhibit neighborhood similarity
and influence scope discrepancies. Low-order neighborhoods in the
user-item bipartite graph are typically more pertinent to the center
node. Besides, the influence of alignment loss from low-order neigh-
bors is only propagated to a small portion of nodes compared with
high-order neighbors. It is necessary to consider the discrepancies
of alignment losses in different orders.

This paper proposes a novel approach, called graph-based align-
ment and uniformity (GraphAU), to address the sparsity issue by
explicitly considering high-order connectivities in the user-item
bipartite graph. To overcome the scalability issue, GraphAU aligns
the user/item embedding to the dense vector representations of
high-order neighbors instead of directly aligning to high-order
neighborhoods individually. To achieve this, several layers of aggre-
gators are used to obtain the dense representation of neighborhoods
within different hops. Then, the user/item embedding is directly
aligned to the dense representation of high-order neighborhoods
of the connected item/user. This approach eliminates the need for
individually computing the burdensome alignment to high-order
neighborhoods and resolves the scalability issue through neighbor-
hood aggregation. As shown in Figure 1, the training time per epoch
of GraphAU nearly keeps constant with the considered exponential
increased high-order edges. Compared with DirectAU, GraphAU
greatly reduces the training time and enables the alignment toward
high-order neighborhoods. To address the discrepancy in alignment
losses, GraphAU includes a layer-wise alignment pooling module
to integrate alignment losses layer-wise. A modification factor 𝛼
is introduced to adjust the weight of alignment loss from differ-
ent layers. GraphAU significantly alleviates the sparsity issue and

achieves state-of-the-art performance on four datasets with varying
scales. The contributions of our paper are summarized as follows:
• We propose a novel approach, named GraphAU, that explicitly
considers high-order connectivities in the user-item bipartite
graph to address the sparsity issue.

• To address the discrepancy in alignment losses, we propose a
simple and effective layer-wise alignment pooling module to
integrate alignment losses layer-wise.

• We conduct extensive experiments on 4 real-world datasets with
varying scales and demonstrate the effectiveness of GraphAU.

2 PRELIMINARIES
Problem Statement. In the context of a recommendation task, the
objective is to generate a list of top 𝑘 items that a given user 𝑢 is
likely to be interested in. This is based on the historical interactions
between users and items, which are represented by an interaction
matrix R of size |U| × |I|. The set of users is denoted by U =

{𝑢1, 𝑢2, ..., 𝑢 |U | } and the set of items by I = {𝑖1, 𝑖2, ..., 𝑖 | I | }. In this
paper, we only consider the implicit feedback, and the interaction
matrix R is binary, where 𝑅𝑢,𝑖 = 1 if user𝑢 has interacted with item
𝑖 , and𝑅𝑢,𝑖 = 0 otherwise. Tomodel the historical interactions, a user-
item bipartite graph G = (V, E) is constructed, whereV = U ∪I
and there is an edge (𝑢, 𝑖) ∈ E between 𝑢 and 𝑖 if 𝑅𝑢,𝑖 = 1. The
objective of the recommender system is to learn from this graph G
and generate a ranked list of potential items for each user 𝑢.

Alignment and Uniformity in RecSys. The two properties [5,
27] are introduced into RecSys by DirectAU [25] that considers the
user-item interactions as positive pairs. They are optimized by two
different losses. Alignment loss is calculated by:

L𝐴 =
1
|E |

∑︁
(𝑢,𝑖 ) ∈E

L𝐴
𝑢,𝑖 =

1
|E |

∑︁
(𝑢,𝑖 ) ∈E

| |e𝑢 − e𝑖 | |2, (1)

where L𝐴
𝑢,𝑖

is the alignment loss from 𝑢 to 𝑖 , and e𝑢 /e𝑖 is user/item
representation. Alignment aims to strengthen the normalized element-
wise similarity between the user’s and his/her interacted items’ rep-
resentation. Uniformity loss is calculated as L𝑈 = 1

2 (L
𝑈
U + L𝑈

I ),
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where L𝑈
U is the uniformity loss for user setU, denoted as:

L𝑈
U = log

1
|U|2

∑︁
𝑢∈U

∑︁
𝑢∗∈U

𝑒−2 | |𝑒𝑢−𝑒
∗
𝑢 | | . (2)

Item set uniformity L𝑈
I is calculated analogously. Uniformity tar-

gets distributing user/item representation uniformly and distin-
guishable. It is utilized as a regularization to avoid a trivial solution
(i.e. all same) of users/item embedding through alignment loss.

3 PROPOSED MODEL
The framework of GraphAU is shown in Figure 2. Two designed
modules are described as follows.

3.1 Multi-hop Neighborhood Alignment
The proposed Multi-hop Neighborhood Alignment Module ad-
dresses the scalability issue of aligning high-order neighborhoods.
This is achieved through an aggregator to obtain dense vector rep-
resentations of neighborhoods within multiple hops. By doing so,
the scalability issue is addressed. The module directly computes the
alignment loss towards the high-order dense neighborhood repre-
sentations, eliminating the need to align high-order neighborhoods,
which can be burdensome individually.

Similar to the approach used in learning representations of
words and graphs [13, 24], embedding techniques have been widely
adopted in recommender systems [9, 12, 20]. This involves the use of
an embedding layer, which serves as a look-up table to map user and
item IDs to dense vectors, denoted as E(0) =

(
e(0)1 , e(0)2 , . . . , e(0)|U |+|I |

)
,

where e(0) ∈ R𝑑 is a 𝑑-dimensional dense vector corresponding to
a specific user or item. The embedding is then fed into an aggre-
gator for information aggregation. The resulting output from the
embedding layer is commonly referred to as the 0-th layer output,
denoted as e(0)

𝑖
. We then compute the dense vector representation

of neighborhoods via an aggregator as:

e(𝑙+1)𝑢 = Aggregator(𝑙+1) ({e(𝑙 )
𝑖

| 𝑖 ∈ N𝑢 }), (3)

where e(𝑙 )𝑢 indicates node 𝑢’s embedding on the 𝑙-th layer, N𝑢 is
the neighbor set of node 𝑢, Aggregator(𝑙 ) (·) aggregates neighbors’
embeddings into a single vector for layer 𝑙 . The aggregator for
items is computed similarly. The aggregator can be any pooling
function over the neighborhood’s representation to a dense vector
as long as it is non-parametric. Each aggregation would generate
one embedding vector for each user/item node. Embedding gener-
ated from different layers is the dense representation of neighbors
within different hops. After 𝐿-th layer convolution, we can have
the multi-hop neighborhood alignment loss as Equation 1 from
different layers, as illustrated in Figure 2:

(L𝐴

𝑢 (0) ,𝑖 (1)
,L𝐴

𝑢 (0) ,𝑖 (2)
, ...,L𝐴

𝑢 (0) ,𝑖 (𝐿)
),

(L𝐴

𝑖 (0) ,𝑢 (1) ,L𝐴

𝑖 (0) ,𝑢 (2) , ...,L𝐴

𝑖 (0) ,𝑢 (𝐿) ),
(4)

where L𝐴

𝑢 (0) ,𝑖 (𝐿)
= | |e(0)𝑢 − e(𝐿)

𝑖
| |2 is the alignment loss from 𝑢’s

embedding e(0)𝑢 to the 𝑖’s representation after 𝐿 layers aggrega-
tor e(𝐿)

𝑖
, which is the dense representation of neighbors within 𝐿

hops. GraphAU aligns the embedding layer directly to high-order

neighborhood representations, facilitating the embedding layer’s
awareness of the high-order information of the counterpart.

3.2 Layer-wise Alignment Pooling
The alignment losses obtained from different layers vary regarding
their relevance to the center node and the scope of their influence.
To address this, a layer-wise alignment pooling module is proposed
to integrate the discrepant losses. Firstly, the user and item align-
ment losses from the same layer are combined through averaging:
L𝐴,(𝐿)
𝑢,𝑖

= 1
2 (L

𝐴

𝑢 (0) ,𝑖 (𝐿)
+ L𝐴

𝑖 (0) ,𝑢 (𝐿) ). We then use a modification fac-
tor 𝛼 to adjust the alignment weight for each layer and combine
them with a weighted sum:

L𝐴
𝑢,𝑖 = L𝐴,(0)

𝑢,𝑖
+ 𝛼L𝐴,(1)

𝑢,𝑖
+ · · · + 𝛼𝐿L𝐴,(𝐿)

𝑢,𝑖
, (5)

whereL𝐴,(0)
𝑢,𝑖

= | |e(0)𝑢 −e(0)
𝑖

| |2 is the direct alignment loss.GraphAU
incorporates a weight factor, denoted by 𝛼 , to balance the impor-
tance of relevant and high-order alignment losses. Specifically,
when 𝛼 < 1, the method emphasizes the relevant alignment loss
and gradually assigns less weight to high-order alignment loss.
When 𝛼 = 1, no discrepancy is made for different layers. Finally,
when 𝛼 > 1, the method prioritizes the influence scope and assigns
more weight to the high-order alignment loss.

A uniformity loss is included to prevent all the embedding from
aligning identically and enable easier distinction between users and
items. The final loss function is as follows:

L =
1
|E |

∑︁
(𝑢,𝑖 ) ∈E

L𝐴
𝑢,𝑖 +

𝛾

2
· (L𝑈

U + L𝑈
I ), (6)

where𝛾 is a trade-off hyper-parameter for alignment and uniformity.
After optimization, the rating score from 𝑢 to 𝑖 is directly computed
as their embedding dot product as 𝑅𝑢,𝑖 = e(0)𝑢

⊤
e(0)
𝑖

.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets: We conduct experiments on 4 real-world datasets with
varying scales, includingAmazonOffice, Toys, and Beauty datasets [8,
18] and one check-in dataset Gowalla [3]. We randomly split the
dataset into training set (60%), validation set (20%), and test set
(20%). We select Recall@20 (R@20), Hit Ratio@20 (HR@20) and
nDCG@20 (N@20) as metrics. Baselines: To justify the effective-
ness of GraphAU, we compare it with 5 baseline methods. MF-
BPR [20], NGCF [28], LightGCN [9], UltraGCN [16] and Direc-
tAU [25]. To make a fair comparison, we fix the embedding size as
32, and tune all the methods based on the same grid search. The
learning rate is searched in {0.1, 0.05, 0.01, 0.005}. We use Adam op-
timizer [10] and searchweight decay in {0.0, 1𝑒−2, 1𝑒−4, 1𝑒−6, 1𝑒−8}.
For NGCF, LightGCN, and GraphAU, layer number is tuned from 1
to 4. For DirectAU and GraphAU, 𝛾 is tuned from 0.0 to 1.0 with
a step of 0.1. For GraphAU, we use Light Graph Convolution [9]
as the aggregator and tune 𝛼 from 0.0 to 2.0 with a step of 0.1. We
apply early stop with 10 epochs to avoid over-fitting.

4.2 Performance Evaluation
Experiment results are shown in Table 1. We can have the follow-
ing observations. 1) GraphAU achieves the best performance on
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Table 1: Overall comparison, the best and second-best results are in bold and underlined, respectively

Method Office Toys Beauty Gowalla

R@20 HR@20 N@20 R@20 HR@20 N@20 R@20 HR@20 N@20 R@20 HR@20 N@20

MF-BPR 0.0818 0.1762 0.0441 0.0755 0.1193 0.0393 0.0580 0.0936 0.0303 0.0824 0.3213 0.0627
NGCF 0.0753 0.1689 0.0403 0.0668 0.1048 0.0346 0.0843 0.1327 0.0453 0.0856 0.3288 0.0648
LightGCN 0.0711 0.1554 0.0380 0.0937 0.1483 0.0490 0.1035 0.1628 0.0546 0.0720 0.2901 0.0552
UltraGCN 0.0796 0.1639 0.0439 0.0928 0.1481 0.0493 0.1043 0.1619 0.0560 0.0887 0.3411 0.0668
DirectAU 0.0839 0.1682 0.0474 0.0985 0.1559 0.0531 0.1074 0.1677 0.0583 0.1134 0.4051 0.0847
GraphAU 0.0979 0.2003 0.0539 0.1041 0.1637 0.0551 0.1124 0.1752 0.0599 0.1174 0.4136 0.0855
Improvement 16.64% 13.68% 13.71% 5.71% 5.04% 3.81% 4.63% 4.47% 2.78% 3.52% 2.11% 1.01%
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Figure 3: Parameter sensitivity of layer number, 𝛼 and 𝛾

all the datasets. On the Office dataset, GraphAU surpasses Direc-
tAU for 16.64% in R@20. It justifies the advantages of considering
high-order alignment in RecSys. 2) DirectAU performs better than
other graph-based baselines. It shows a direct utilization of align-
ment and uniformity on user-item pairs can learn an informative
user/item embedding, which justifies the advantages of alignment
and uniformity-based user/item representation learning in RecSys.
3) The performance of graph-based baselines varies with different
datasets. For example, NGCF overpasses LightGCN on Office and
Gowalla datasets while failing on Toys and Beauty dataset. It shows
pure graph-based methods are sensitive to datasets.

4.3 Model Analysis
We further analyze the influential hyper-parameters layer number
𝐿, modification factor 𝛼 , and alignment/uniformity trade-off 𝛾 of
GraphAU. Experiment results are shown in Figure 3. We can have
the following observations. 1) 𝐿: With the increase of layer number,
the performance of GraphAU first increases to its peak and then
decreases on both datasets. The initial increase shows GraphAU
alleviates the sparsity issue by aligning high-order neighborhoods’
representation, while the following decrease indicates excessive
high-order alignment leads to the performance drop. 2) 𝛼 : When

Table 2: High-order uniformity experiment on Office.

Method R@20 HR@20 N@20
GraphAU 0.0979 0.2003 0.0539
+ 1-st order uniformity 0.0849 0.1704 0.0482
+ 2-nd order uniformity 0.0857 0.1732 0.0473
+ 3-rd order uniformity 0.0799 0.1600 0.0440

we conduct experiments on 𝛼 , we fix the number of layers as 4
to observe its influence better. Experiments show 𝛼 impacts the
performance of GraphAU greatly. An interesting finding is that the
peak point of 𝛼 can be smaller (as in Toys) or larger (as in Office)
than 1 based on different datasets. It shows for different datasets,
GraphAU adapts on different aspects. When 𝛼 < 1, GraphAU as-
signs decaying weights for high-order alignment to focus more on
local relevant neighborhoods. When 𝛼 > 1, GraphAU increases the
weights for high-order alignment, which shows it focuses more on
the influence scope of alignment loss. 3) 𝛾 : It is the most influential
hyper-parameter on all datasets, which requires careful tuning for
GraphAU. Similar to high-order alignment in GraphAU, we also in-
vestigate the impact of high-order uniformity by adding uniformity
loss on the aggregated user/item high-order embedding. Results
are shown in Table 2. We can see that adding high-order uniformity
loss deteriorates the performance of GraphAU. It is because the
graph explicitly represents only the alignment information between
users and items. Enforcing excessive regularization of high-order
uniformity is not a favorable option for GraphAU.

5 CONCLUSION
In this paper, we identify, study, and cope with the sparsity is-
sue when alignment/uniformity encounters RecSys. We propose
a solution called GraphAU, which focuses on explicitly aligning
user/item embeddings while taking into account high-order con-
nectivities in the user-item bipartite graph. To address scalability,
GraphAU aligns towards the dense vector neighborhood representa-
tion obtained by an aggregator, rather than aligningwith high-order
neighborhoods individually.We also introduce a modification factor
that effectively integrates discrepant alignment losses from differ-
ent layers. Our experiments demonstrate the benefits of aligning
high-order neighborhoods and the effectiveness of GraphAU.
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