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ABSTRACT

Collaborative filtering (CF) is a widely employed technique that
predicts user preferences based on past interactions. Negative sam-
pling plays a vital role in training CF-based models with implicit
feedback. In this paper, we propose a novel perspective based on
the sampling area to revisit existing sampling methods. We point
out that current sampling methods mainly focus on Point-wise or
Line-wise sampling, lacking flexibility and leaving a significant
portion of the hard sampling area un-explored. To address this
limitation, we propose Dimension Independent Mixup for Hard
Negative Sampling (DINS), which is the first Area-wise sampling
method for training CF-based models. DINS comprises three mod-
ules: Hard Boundary Definition, Dimension Independent Mixup,
and Multi-hop Pooling. Experiments with real-world datasets on
both matrix factorization and graph-based models demonstrate
that DINS outperforms other negative sampling methods, establish-
ing its effectiveness and superiority. Our work contributes a new
perspective, introduces Area-wise sampling, and presents DINS
as a novel approach that achieves state-of-the-art performance for
negative sampling. Our implementations are available in PyTorch!.

CCS CONCEPTS

« Information systems — Recommender systems; Collabora-
tive filtering.
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1 INTRODUCTION

In the contemporary era of voluminous data [15], individuals are
inundated with an incessant influx of content generated by the in-
ternet. To address the issue of information overload, Recommender
Systems (RecSys) are employed to assist users in locating the most
relevant information and are increasingly pivotal in online services
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Figure 1: Illustration of items sampled by Point/Line/Area-
wise sampling methods.

such as news feed [27], music suggestion [5], and online shop-
ping [9]. Collaborative filtering (CF) [13], a highly effective method
that predicts a user’s preference based on their past interactions, is
widely employed. The latest CF-based models [10, 25] incorporate
historical interactions into condensed user/item vectors and pre-
dict a user’s preference for each item based on the dot product of
the corresponding vectors. These models have garnered significant
research attention and have been demonstrated to be effective in a
range of application contexts [30, 33].

Negative sampling [2, 35] is a key technique when training CF-
based models with implicit feedback [18], which is inferred from
user behavior, such as clicks, views, and purchases, rather than be-
ing explicitly provided by the user. Since implicit feedback is preva-
lent in most online platforms, it is frequently utilized in training
RecSys [10, 11, 33]. These behaviors only signify a user’s positive
feedback, necessitating the integration of a negative sampling mod-
ule to provide negative feedback. The training process of CF-based
models involves the differentiation between positive and negative
examples, enhancing its ability to suggest items of interest to the
user. The negative sampling approach has a significant impact on
the ultimate performance of CF-based models [6, 11, 20, 23, 35].
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For each observed user-item interaction, the negative sampling
module samples one or multiple negative items [3]. By introduc-
ing the concept of sampling area analysis, we offer a fresh per-
spective for understanding and categorizing these methods. In ac-
cordance with the proposed framework, this paper explores the
sampling of negative items in relation to observed user-item in-
teractions. As shown in Figure 1, i is the observed positive item.
Notably, the sampled negative items, denoted as iz to ig, are obtained
through diverse methodologies, which can be further categorized
into Point/Line/Area-wise negative sampling methods.

(1) The Point-wise sampling method (i2) selects a particular item
from the candidate item set using a predetermined sample dis-
tribution. In terms of embedding space interpretation, these
methods involve selecting a single point from a predefined set
of candidate points, each representing a potential candidate
item. This category encompasses a majority of existing meth-
ods [7, 16, 19, 23, 32, 35], as they employ sampling techniques
within the discrete space.

(2) The Line-wise sampling method (i3, ig) involves selecting a
pseudo-negative item positioned along a line within the em-
bedding space. A notable representative work in this category
is MixGCF [11], which incorporates the mixup technique [34].
MixGCF employs a mixing coefficient sampled from the beta
distribution to blend the positive item and the sampled nega-
tive item. This blending process creates a linear interpolation
between the positive and negative items, generating a pseudo-
negative item located precisely on the line connecting the posi-
tive and negative instances. By acquiring a challenging negative
item, the model gains improved discriminative capabilities be-
tween positive and negative items.

(3) This paper introduces the novel Area-wise sampling approach
(is—ig), which involves selecting a pseudo-negative item that
resides within a specific area within the embedding space. Fig-
ure 1 serves as an illustrative example. The hard negative area,
depicted as a grey square, represents the region bounded by
the dimensions of a positive item and a point-wise sampled
negative item. When compared to Point-wise and Line-wise
sampling methods, the Area-wise sampling technique offers
a more extensive exploration space and greater flexibility. It
allows for sampling from the hard negative area, which pro-
vides increased capacity for differentiating between positive
and negative instances in multiple dimensions, thereby offering
varying degrees of hardness.

The proposed Area-wise sampling method faces several signif-
icant challenges that must be addressed. Firstly, the definition of
boundaries for the hard negative area is crucial to the effective-
ness of this approach. The sampling area plays a pivotal role, as
an excessively large area may fail to provide informative negative
items, while an overly small area could result in false negative
item generation [7]. The second challenge involves enabling Area-
wise sampling within the determined hard negative area. Previous
methods have primarily focused on sampling from discrete spaces
or utilizing the mixup technique to generate Line-wise pseudo-
negative items. The ability to sample within a continuous area
represents a novel research question in this context. Lastly, given
the flexibility introduced by sampling within an area, an additional
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challenge is effectively regularizing the sampling method to gen-
erate informative pseudo-negative items. Developing appropriate
regularization techniques is necessary to ensure the quality and
relevance of the generated negative samples.

This paper presents Dimension Independent Negative Sampling
(DINS) as a solution to facilitate Area-wise sampling in the context
of collaborative filtering. DINS comprises three distinct modules,
each designed to address the aforementioned challenges in a tar-
geted manner. Firstly, the proposed Hard Boundary Definition
module within DINS determines the appropriate boundaries for the
hard negative sampling area. It accomplishes this by selecting the
item with the highest dot-product similarity to the positive item,
thus establishing a boundary that closely aligns with the positive in-
stance. Following the establishment of boundaries, DINS introduces
a novel Dimension Independent Mixup module, enabling the
sampling of items from the corresponding area. This module em-
ploys distinct linear interpolation weights for different dimensions,
thereby extending the Line-wise sampling approach to support
Area-wise sampling. Lastly, DINS proposes the Multi-hop Pooling
module to regularize the sampling process and generate informa-
tive pseudo-negative items based on multiple hops of neighborhood
information. By leveraging this module, DINS achieves effective
regularization, thereby enhancing the quality and relevance of the
sampled negative instances. By integrating these three modules,
DINS samples from the hard negative area successfully, and yield
superior performance compared to other negative sampling meth-
ods when applied to various backbone models. The contributions
of this work can be summarized as follows.

o Novel Perspective: We offer a fresh perspective from the embed-
ding space to comprehend and analyze existing negative sampling
methods, providing insights into their mechanisms.

e Area-wise Sampling: We are the first to introduce Area-wise
negative sampling, recognizing the challenges, and presenting
corresponding solutions.

o DINS: We propose DINS as the first Area-wise negative sampling
method, enabling highly flexible sampling over an area. This
novel approach surpasses existing methods and achieves state-
of-the-art performance in collaborative filtering tasks.

e Experimental Validation: We conduct extensive experiments on
three real-world datasets, employing different backbone mod-
els. The results demonstrate the effectiveness and superiority
of DINS, confirming its performance enhancement compared to
other negative sampling methods.

The remaining paper is organized as follows. Section 2 represents
the preliminaries of this paper. Section 3 illustrates different parts
of DINS in detail. Section 4 conducts experiments comparing other
methods and further experiments to show the effectiveness of DINS.
Section 5 represents the most related works for reference, and we
conclude DINS and discuss future research directions in Section 6.

2 PRELIMINARIES

In this section, we first formulate the collaborative filtering (CF)
problem, and then illustrate the negative sampling problem in CF-
based model training.
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Figure 2: Main framework of DINS. For each observed interaction (u, i), DINS first encodes u’s and i’s information within the
graph with different numbers of GNN layers. For the output of each layer, (a) DINS defines the sampling area by the Hard
Boundary Definition module and then (b) mixes the sampled item with the corresponding positive item via the proposed
Dimension Independent Mixup module. Finally, (c) DINS generates the synthetic negative item by integrating the negative
signal from different hops of neighborhoods with a Multi-hop Pooling module.

2.1 Collaborative Filtering

Collaborative filtering aims to predict user’s preferences based on
users’ historical interactions. It has been shown as an effective and
powerful tool [1, 14] for RecSys. With implicit feedback, we have a
set of users U = {uy, uz, ..., uqq) }, asetof items I = {iy, iz, ..., i| 7|},
and the observed user-item interactions R € RIUIXIZ |, where
Ry; = 1 if user u has interacted with item i, or R,; = 0 oth-
erwise. Learning from historical interactions, current advanced
CF-based methods [10, 25] learn an encoder function f(-) to map
each user/item into a dense vector embedding, i.e., f(u), f(i) € Rd,
where d is the dimension of vector embedding. The predicted score
from u to i is then calculated as the similarity of two vectors (e.g.,
dot product similarity, R, ; = f(u)T f(i)). Then these methods rank
all items based on the prediction score and select the top k items
{i1, ig, ..., i } as recommendation results for each user.

2.2 Graph Neural Network for
Recommendation

In real-life applications, users can only interact with a limited num-
ber of items, which leads to the data sparsity problem [36]. To
alleviate the problem, the most advanced CF-based models [10, 28]
explicitly utilize high-order connections by representing the histor-
ical interactions as a user-item bipartite graph G = (V, E), where
V = U U I and there is an edge (u,i) € & between u and i if
Ry.; = 1. By utilizing graph neural network (GNN) as the encoder
function f(-), these methods learn the representations of user/item
embeddings by aggregating information from their neighbors, so
that connected nodes in the graph structure tend to have similar
embeddings. The operation of a general GNN computation can be

expressed as follows:
el = el @ AGGHY ({el) | i € M), 1)

where e,(j) € RP is w’s embedding on the I-th layer, NV, is the neigh-
borhoods of u, AGG!) (-) is a function that aggregates neighbors’
embeddings into a single vector for layer [, and & combines u’s
embedding with its neighbor’s information. AGG(-) and @ can be
simple or complicated functions. Item is calculated in the same way.
After stacking L layer GNN convolution, we can obtain L user/item
embedding from different GNN layers. Take the user as an example;

(1) )

we will obtain (e, 7, e, ...,

tion. ey) encodes the information within I-hop neighborhoods,

which provides a unique user representation with local influence
scope. A pooling function (e.g., attention, mean, sum) is used to

combine them together e, = Pool(e,sl), e,(f), el(lL)).

elaL)) for each user after the aggrega-

2.3 The Negative Sampling Problem

The observed implicit feedback in RecSys only indicates the user’s
positive interest. Training with only positive labels would cause the
model degradation without the ability to distinguish different items.
Thus, the training of CF-based models involves the negative sam-
pling procedure to provide the negative signal. The corresponding
training method trains the model to give higher scores to observed
interactions while lower scores to negative sampled interactions.
The most renowned is pair-wise BPR loss [19]:

1 _
Loer = 1g; > —log(sigmoid(s(w i) - s(u,i7))),  (2)
(u,i)e&
where s(u, i) is the predicted rating score from u to i, and i~ is
the negative sampled item. The quality of sampled i~ critically im-
pacts the model performance. Hard negative samples can effectively
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assist the model in learning better boundaries between positive
and negative items [33]. In terms of sampling methods, discrete
sampling[19, 23, 33, 35] can be considered as point-wise sampling,
which selects negative items from a discrete sample space. Negative
sampling based on mixup[11, 20], on the other hand, can be classi-
fied as line-wise sampling because this method performs a linear
interpolation between two items to obtain a new negative sample
along the diagonal line. Both point-wise sampling and line-wise
sampling, in fact, do not adequately approximate the positives in the
sample space and, therefore, cannot train a more powerful encoder.
In this paper, we propose the first area-wise sampling method that
greatly extends the sampling area.

3 PROPOSED METHOD

This section illustrates the proposed DINS that enables area-wise
negative sampling. As Figure 2 demonstrates, DINS mainly consists
of three parts, i.e.,, Hard Boundary Definition, Dimension Indepen-
dent Mixup, and Multi-hop Pooling.

3.1 Hard Boundary Definition

The first question to answer in the proposed area-wise negative
sampling is how to define the continuous sampling area. The hard
boundary definition module is shown in Figure 2(a). It samples a
boundary item to define the sampling area. For each interaction
(u, i), DINS defines the area by sampling a boundary item i.. In each
sampling, DINS pre-samples a candidate set C = (i1, iz, ..., i|¢|) to
reduce the computation workload as previous researches [7, 35].
Then DINS selects the item with the highest dot-product with u to
define the boundary:

iy = arg r_nax(e,—;eil, e e, ... e,-;ei‘Cl ). (3)

1

The boundary item i, defines the hard negative area together with
the corresponding positive item i in the embedding space. As shown
in Figure 1, the hard negative area is defined as the space between
i and i,. The majority of previous research [7, 19, 35] samples
discrete existing items. While MixGCF [11] allows the sampling on
continuous space along the diagonal line from i to iy, it still leaves
the large-volume hard negative area un-explored.

3.2 Dimension Independent Mixup

The second question to answer is how to explore the non-diagonal
space within the hard negative area and extend the line-wise to area-
wise sampling. To achieve this, we propose the novel Dimension
Independent Mixup method in Figure 2(b). It enables a dimension
independent mix between the boundary item i, and positive item i.

A further comparison to the traditional Mixup is shown in Fig-
ure 3. Line-wise sampling methods [11, 20] utilize the traditional
Mixup to generate a negative item. As shown in Figure 3(a), tradi-
tional Mixup synthesizes the negative item via linear interpolation
of the positive and boundary items with a unified weight « on all di-
mensions. With all dimensions having the same linear interpolation,
it can only generate a synthetic item falling on the line between the
two mixed items in the continuous embedding space. Figure 3(b)
shows the proposed Dimension Independent Mixup, which is the
core idea to support area-wise negative samples. It mixes the two
items dimension independently by calculating specific interpolation
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Figure 3: (a) Traditional Mixup assigns the same interpola-
tion weights on all dimensions. (b) The proposed Dimension
Independent Mixup assigns different interpolation weights
on different dimensions.

weights for different dimensions. It is more flexible and increases
the exploration space from a line to the whole hard negative area.

For each interaction (u, i), Section 3.1 samples a boundary item
is to define the sampling area. The mixup for the d-th dimension is
calculated as:

et =ad*ei +(1-ay) *e?, 4)

1
where e;i is the d-th dimension value of e;. oy is the interpolation
weight for the d-th dimension, which is calculated as :

exp(ed ei)

7 )

P = exp(ez‘f * e?) + exp(ez‘f * €f
where eff is the d-th dimension value of e;, and f is a hyper-
parameter to tune the relative weight for the mixup. A larger f
leads to a smaller a4, and ef, is more similar with positive item.
We concatenate the dimensions together to obtain the mixed item:

= Concat(el_, ez_, ey ell-:z) (6)

e;- is the generated negative item embedding for the interaction
(u, i). It can be directly used to calculate the ranking loss in Equa-
tion 2. Calculating the mixup weight independently for each di-
mension extends the exploration area from a line to the whole hard
negative area. It greatly improves the final recommendation perfor-
mance by providing more varied items, as illustrated in Section 4.

3.3 Multi-hop Pooling

We further extend DINS to better support graph neural network
(GNN) based collaborative filtering methods [10, 29]. These meth-
ods are shown to be effective by explicitly considering the high-
order connections and encode user/item high-order neighborhood
information into dense vectors. The output of different GNN lay-
ers encodes neighborhoods within different hops. Regarding the
negative sample, MixGCF [11] also proves to be effective when con-
sidering different hops of neighborhoods. To utilize the high-order
information, DINS samples negative items based on each dense
vector extracted by different GNN layers and utilizes a pooling
module to obtain the final negative item embedding.

When we utilize GNN as the encoder model f(-), we can ob-
tain one dense embedding from each GNN layer to encode the
corresponding neighborhoods’ information. After L layers GNN
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encoding on the user-item bipartite graph G, we obtain L dense
representations for each user u and item i:

fw) =N, e?), el
) = (egl),egz),..., el.(L>),

1

™

Following Section 3.1 and Section 3.2, we synthesize a negative

item embedding elg) based on e,(f) and elg). Then we obtain the
final negative sample via a Pooling function:

ej- = Pool(elg), eg,z), elg“)), 8)

where the Pool can be any function pools multiple tensors into a sin-
gle tensor. For simplicity, we test mean pooling and concatenation
functon for all datasets.

3.4 Complexity Analysis

The training process of DINS is illustrated step by step in Algo-
rithm 1. The time complexity for each sampling process comes
from the three proposed modules. Hard Boundary Definition mod-
ule takes O(MD), where M is the candidate set budget and D is
the dimension size. Dimension Independent Mixup module takes
O(D). Thus, the time complexity without considering multi-hop
neighbors is O(MD). When considering the multi-hop neighbors,
DINS needs an extra sampling procedure for each GNN layer. The
total time complexity is then O(LMD), where L is the number of
GNN layers. To be noted that, the time complexity is the same as
MixGCEF, but DINS extends to a much larger exploration space.

Algorithm 1 The training process with DINS

Require: Training setG, Recommendation user/item encoder f(-),
a candidate set budget M, a parameter f to control positive
mixing

1: fort=1,2,3,...,to T do

2. Sample a mini-batch of user-item positive pairs{(u, i) }.

3. Initialize loss Lgpr = 0.

4. for each (u, i) pair do

5 Get the user and positive item embeddings by encoder

J0).
6: Get ID embedding of uniformly sampled M negatives as
the candidate set.
7: Get the boundary negative item i, by (3).
8 Calculate the independent dimensional weight matrix of
boundary item i, by (5).
9 Synthesize a hard negative item e;- by (4) and (6).
10: if f(-) is GNN-based model then
11 Further synthesize hard negative item for output of
different GNN layers
12: Pooling the synthesized negative items by (8)
13: end if
14: Calculate Lppg by (8).

15:  end for
16:  Update 0 by descending the gradients V9 Lppr .
17: end for
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Table 1: Statistics of the datasets.

Dataset #User  #Items #Interactions Density

Alibaba | 106,042 53,591 907,407 0.016%
Yelp2018 | 31,668 38,048 1,561,406 0.13%
Amazon | 192,403 63,001 1,689,188 0.014%

4 EXPERIMENTS

This section empirically evaluates the proposed DINS on three real-
world datasets with three different backbones. The goal is to answer
the four following research questions (RQs).

e RQ1: Can DINS provide informative negative samples to improve
the performance of recommendation?

e RQ2: Does every module contributes to the effectiveness?

o RQ3: What is the impact of different hyper-parameters on DINS?

o RQ4: Is DINS really supporting area-wise negative sampling?

4.1 Experimental Setup

4.1.1 Datasets. For a fair comparison, we also evaluate DINS on
three benchmark datasets: Alibaba [11], Yelp2018 [25], and Ama-
zon [11] following previous research [11]. The detailed Statistics of
three public datasets are shown in Table 1, which exhibits the vari-
ation in scale and sparsity. Yelp2018 demonstrates the highest level
of density among these three datasets under consideration, while
the other two datasets exhibit relatively lower levels of density.

4.1.2 Baselines. To validate the effectiveness of DINS, we chose
three commonly used backbone networks, LightGCN [10] and
NGCF [25] as GNN-based encoders and MF [19] as a non-GNN-
based encoder. Additionally, we selected five baseline negative
sampling methods for comparison.

e Popularity: It samples negative items by assigning a higher
sampling probability of more popular items.

e RNS [19]: Random negative sampling (RNS) strategy is the most
common and widely used approach, which applies a uniform
distribution to sample an item that the user has never interacted
with as a negative item.

o DNS [35]: Dynamic negative sampling (DNS) strategy adaptively
selects the highest-scoring negative item by the current recom-
mendation model among randomly selected items. Such a nega-
tive item is considered a hard negative item for training.

e IRGAN [23]: It is a GAN-based strategy for generating negative
sampling distribution.

o MixGCF [11]: MixGCF is the state-of-the-art sampling method
based on Mixup, which applies positive mixing and hop mixing
to synthesize new negative items.

4.1.3  Evaluation Method. We use Recall@K (R@K) and NDCG@K
(N@K) to evaluate the performance of the top-K recommendation
of our model, both of which are widely used in the recommendation
system. By default, the value of K is set as 20. We present the average
metrics for all users in the test set, calculating these metrics based
on the rankings of non-interacted items. In accordance with prior
research [10, 25], we employ the complete full-ranking technique,
which involves ranking all items that have not yet been interacted
with by the user.
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4.1.4 Experimental Settings. We implement our DINS and other
baseline models based on Pytorch 2.0 and Python 3.8. Both the user
embedding size and the item embedding size are fixed to 64 for
backbone recommendation models (NGCF, LightGCN and MF). To
achieve better performance, we use Xavier[8] to initialize embed-
ding parameters for all encoders, and the number of aggregation
layers in NGCF or LightGCN is set as 3 by default. Adam [12] is used
to optimize all encoders. We set the batch size as 2048 for Light GCN
and MF, while 1024 for NGCF. For the remaining hyper-parameters,
we used the grid search technique to find the optimal settings for
each recommender: the learning rate is searched in {0.0001, 0.001,
0.01}, coeflicient of weight decay is tuned in {104, 10°, 106}. More-
over, the size of the candidate pool for DNS, MixGCF, and our DINS
is searched in {8,16,32,64}, and the hyper-parameter f, which is
used in our method is searched from 0 to 10, steps of 0.5 each.

4.2 RQ1: Performance Evaluation

We report the overall performance of the five baselines on the three
backbones in Table 2. We can have the following observations:

o DINS consistently outperforms all baselines by a large margin
on three datasets across three classical encoders. Specifically,
DINS accomplishes remarkable improvements over the second-
best baseline, especially on the Amazon and Alibaba datasets
which improved Recall@20 by 23%, and 36.1%, respectively. This
further demonstrates the effectiveness of area-wise sampling, as
it enhances the performance of not only GNN-based encoders
but also non-GNN-based encoders.

o In most cases, the line-wise sampling method (MixGCF) is better

than the rest point-wise sampling methods. It shows the advan-

tage of extending exploration space from points to lines.

DINS exhibits greater improvement on the two datasets of lower

density (Alibaba and Amazon), ranging from 8.0% to 36.1%. This

highlights DINS’s ability to explore the continuous embedding
space and effectively enhance performance on sparse datasets.

MixGCF employs "hop mixing" and "positive mixing" to improve

the quality of negative samples. However, MF is not a GNN-based

encoder, so "hop mixing" cannot be used; we only use "positive
mixing" in MixGCF (marked with %) under MF. Compared with
other baselines, MixGCF without "hop mixing" achieves state-of-
the-art results solely on the Amazon dataset when utilizing the

MF-based encoder. However, it falls short of surpassing DNS on

both the Alibaba and Yelp2018 datasets. On the other hand, our

DINS not only achieves state-of-the-art results in the GNN-based

model but also excels in the Non-GNN-based model, establishing

its superiority across the board.

4.3 RQ2: Ablation Study

In this section, we conduct an ablation study of the three modules
of DINS on LightGCN by building 3 variants. A is built by removing
the Hard Boundary Definition module, where we randomly sample
a boundary item from the candidate set. B is built by replacing
the dimension independent mixup module with the traditional
mixup. C is built by removing the multi-hop pooling module by
only considering the negative item for the first layer aggregation.
Corresponding experimental results are presented in Figure 4. We
can have the following observations:
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Figure 4: Ablation experiments on LightGCN.

o DINS always performs the best. Removing any module would
have a negative effect on the performance. It reveals each part of
DINS contributes to the performance.

e Removing the Hard Boundary Definition module (Variant A)
results in a substantial drop in performance across the datasets,
indicating the importance of maintaining an optimal size for the
negative sampling region. A too-small region may lead to the
loss of valuable feature information from the negative samples.
At the same time, a too-large region hampers the effective fusion
of information from the positive samples.

e Compared with the other two modules, changing the dimension
independent mixup module to the traditional mixup (Variant
B) has a relatively small performance drop. It shows the mixup
technique is already powerful by generating negative items in the
continuous space. The proposed dimension independent mixup
further enhances the improvement, especially on the Alibaba.

e Removing the multi-hop pooling module has a great impact on
the performance. It reveals the importance of considering high-
order information during the negative sampling procedure. This
observation aligns with the finding of MixGCF [11].

By observing the data, it can be seen that the area of negative
sampling can neither be too large nor too small. According to Equa-
tion 4, if the area is too small, the hard negative item is synthesized
too close to the positive items and thus the features of the negatives
will be lost, while if the area is too far, the features of the positive
items cannot be incorporated into the hard negative items at all.

4.4 RQ3: Parameter Sensitivity

In this section, we focus on how the hyper-parameters (, M) and
the boundary item selection method actually affect DINS.

4.4.1 Impact of the f value. f is a distinctive hyper-parameter
within our DINS framework, serving to regulate the incorporation
of information from the positive item as a collective entity into
our synthetic hard negative item. f is a propensity coefficient that
controls whether our synthetic Hard Negative Samples (HNS)
as a whole converge toward positive or negative items. Larger f
means the synthetic HNS is closer to the positive item. We conduct
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Table 2: Performance Comparision. The best and runner-ups are marked in bold and underlined separately.

Backbone Sampling Amazon Alibaba Yelp208
Model Method Recall@20 NDCG@20 | Recall@20 NDCG@20 | Recall@20 NDCG@20
Popularity 0.0323 0.0153 0.0481 0.0231 0.0469 0.0369
RNS 0.0399 0.0178 0.0550 0.0251 0.0605 0.0493
DNS 0.0453 0.0211 0.0576 0.0258 0.0706 0.0581
LightGCN
i IRGAN 0.0338 0.0150 0.0551 0.0255 0.0535 0.0251
MixGCF 0.0456 0.0214 0.0689 0.0332 0.0691 0.0565
DINS 0.050 0.0236 0.0764 0.0358 0.0738 0.0604
Improvement 9.6% 10.3% 10.9% 7.9% 4.5% 4.0%
Popularity 0.0115 0.0047 0.0180 0.0080 0.0253 0.0196
RNS 0.0288 0.0119 0.0337 0.0144 0.0561 0.0457
NGCF DNS 0.0304 0.0131 0.0475 0.0228 0.0634 0.0520
IRGAN 0.0194 0.0078 0.0280 0.0116 0.0438 0.0353
MixGCF 0.0350 0.0150 0.0562 0.0268 0.0686 0.0567
DINS 0.0379 0.0163 0.0607 0.0277 0.0709 0.0586
Improvement 8.3% 8.7% 8.0% 3.4% 3.4% 3.4%
Popularity 0.0148 0.0122 0.0215 0.0103 0.0382 0.0317
RNS 0.0245 0.0104 0.0301 0.0144 0.0558 0.0449
MF DNS 0.0320 0.0154 0.0487 0.0240 0.0663 0.0547
IRGAN 0.0281 0.0119 0.0307 0.0139 0.0412 0.0338
MixGCF* 0.0342 0.0156 0.0480 0.0232 0.0642 0.0525
DINS 0.0423 0.0197 0.0663 0.0320 0.0699 0.0579
Improvement 23.7% 26.3% 36.1% 33.3% 8.9% 10.3%
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Figure 5: The impact of the f value on model performance.

experiments with all 3 datasets on 3 recommenders. Due to the
space limit, we illustrate parts of the results in Figure 5. Similar
trends are also observed on other experiments. The observations
are as follows:

o As the dataset becomes sparser, the encoder necessitates the
fusion of a greater amount of information about the positive items.
According to the statistics in Table 1, it is clear that Yelp2018 is
much denser than Amazon and Alibaba. On the Yelp2018 dataset,
LightGCN achieved the best results at around = 0.1 and MF

at around f = 2. In contrast, on the Amazon dataset, Light GCN
needs to be around 2.3 and MF needs to be around 8 to achieve
the best results. This may be due to the fact that the sparser the
dataset the larger the embedding space of users and items is,
resulting in a larger sampling boundary for our determination.
Even after dimension-wise mixup, the synthesized negative items
can still be far away from the positive one, so we need to move
closer to the positive item as a whole with a larger bet.

e The stronger the encoding capability of the encoder, the less in-

formation from the positive item is needed for DINS. Light GCN
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Figure 6: The impact of the candidate set size M.

is a state-of-the-art CF method that employs a message-passing
mechanism on the bipartite user-item graph to learn a better em-
bedding and MF is a straightforward model which recommends
by a factorization-based approach. The p-values required for
LightGCN to achieve the best performance on all three datasets
are much smaller than those of MF and NGCF. This may be be-
cause LightGCN uses a message-passing mechanism on the graph
to automatically aggregate a portion of the information from the
positive items, while MF does not have a message-passing mech-
anism to naturally aggregate the information from the positive
items. For example, on the Amazon dataset, LightGCN achieves
a significantly higher performance compared to MF. While Light-
GCN only requires an f-value of 2.3, MF necessitates an f-value
of 8. Remarkably, LightGCN outperforms MF by 18.2% on Re-
call@20 and 19.8% on NDCG@20 metrics. This observation high-
lights the value of gathering information from both neighboring
nodes and positive examples when training the encoder. The
effectiveness of LightGCN, with its message-passing mechanism
for automatic information aggregation from positive examples,
demonstrates the benefit of incorporating such information to
enhance the encoder’s performance.

4.4.2  Impact of the candidate set size M. We also conducted an
experimental analysis on the candidate set size for negative items
in DNS and MixGCF, which are included as baselines. We systemati-
cally tested these baselines using candidate set sizes of 8, 16, 32, and
64. Detail experiments are illustrated in Figure 6. We can observe
that the M impacts all the sampling methods. Generally, increas-
ing the candidate set size M tends to improve the performance of
the experiment. For example, the best results are mostly achieved
with M = 64. Interestingly, MixGCF exhibits lower stability than
DNS and DINS, even yielding contrasting outcomes on the Amazon

dataset. Notably, as the candidate set increases, MixGCF demon-
strates a significant decline. We attribute this disparity in results to
the attributes of the dataset.

4.4.3 Impact of the boundary item selection method. To delve deeper
into the influence of the boundary item selection method in Sec-
tion 3.1, we further conduct experiments on the impact of the
selection method. In the experiment, we opt for LightGCN as the
encoder due to its superior performance. To be noted that the sam-
pled boundary item decides the sampling area together with the
positive item. The area is the continuous space between the bound-
ary and the positive item. By multiplying all the absolute differences
in each dimension, we can obtain the volume of the sampling area.
Based on this principle, we further design 3 sampling methods to
find the boundary item as:

e Random. Randomly select an item from the candidate set as the
boundary item.

e Min. Find the item that constitutes the minimum sampling area
volume as the boundary item.

e Max. Find the item that constitutes the maximum sampling area
volume as the boundary item.

e Dot Product (DP). The method used in DINS as Equation 3.

After obtaining the boundary item, we also conduct the dimen-
sion independent mixup and multi-hop pooling. Subsequently, we
conducted experiments on LightGCN to examine the impact of
the boundary item selection method across the three datasets. The
detailed experimental results are shown in Table 3. We can observe
that Min and Max perform badly in most cases, which reveals the
importance of selecting a suitable area for generating negative
items. Even random selection outperforms Min and Max methods.
The method used by DINS (DP) always performs the best across
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Table 3: Performance Comparison of different boundary item
selection methods.
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Amazon Alibaba Yelp2018
R@20 N@20 | R@20 N@20 | R@20 N@20
Random | 0.0300 0.0123 | 0.0460 0.0201 | 0.0653  0.0537
Min 0.0145 0.0055 | 0.0279 0.0129 | 0.0441 0.0360
Max 0.0246  0.0084 | 0.0182 0.0081 | 0.0357 0.0294
DP 0.0493 0.0231 | 0.0764 0.0358 | 0.0738 0.0606

the 3 datasets. It shows we have selected a suitable sampling area
to generate the negative item.

4.5 ROQ4: Case Study

To answer RQ4: Does DINS really support area-wise hard negative
sampling? we conduct a case study for readers to understand the
sampling principle behind DINS. Experiments are conducted on
the Yelp2018 dataset with LightGCN as the backbone recommender.
We train the model with RNS, MixGCF, and DINS for 60 epochs.
For a fixed user-item interaction, we store the embedding of the
positive item and the sampled negative item by different sampling
methods in each iteration. Then we obtain the averaged positive
item representation by mean pooling over all the collected positive
item embedding. Then we concatenate the averaged positive item
and all collected negative items embedding together and visualize
the distribution via t-SNE [22]. For better visualization, we move the
positive item to the center of the visualization by subtracting all the
reduced 2-d embedding from the reduced positive item embedding.

The visualization is shown in Figure 7. We draw a circle (with
a radius represented by R) to show the farthest sampled negative
item. We can have three observations:

e The RNS sampling method samples varied negative items that
are far from the positive item. It exhibits the characteristic of the
point-wise negative sampling method. It samples other existing
items that are restricted in the upper-left corner area based on
currently learned embedding.

e The MixGCF method, as expected for the line-wise sampling
method, exhibits line-style negative sampling results. It is due to
the traditional Mixup method that generates a linear interpola-
tion of two embeddings with the same weight on all dimensions.

o DINS shows the characteristics of the area-wise sampling method.
We can observe the sampled negative items spans across the
whole circle, which gives a sufficient exploration of the embed-
ding space. At the same time, the sample radius of DINS is only
0.22, which is the smallest among the three methods. It shows
DINS samples the hard negatives for assist model training.

5 RELATED WORK

In this section, we introduce the related work for DINS, which
includes the graph-based recommendation and negative sampling
method in recommendation.

5.1 Graph-based recommendation

Recent years have witnessed the rapid development of the emerging
direction of GNN-based recommender systems [10, 17, 21, 24, 25, 29—
31, 33] where the user-item interactions are presented as a bipartite
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Figure 7: The hard negatives sampled by RNS, MixGCF,DINS

graph, and graph neural network methods are employed to learn
the representation of each node via exploring structure informa-
tion. For example, Pinsage [33] samples neighborhoods according
to the visit counts of a node through a random-walk sampling ap-
proach. GC-MC [21] proposes a graph auto-encoder framework
to construct the node representation by directly aggregating the
information of its neighbors. NGCF [25] captures high-order con-
nectivities by stacking multiple embedding propagation layers and
utilizes the combination of different layers’ output for the rating
prediction. Compared with NGCF, LightGCN [10] achieves bet-
ter training efficiency and generation capability by removing the
feature transformation and nonlinear activation function. Finally,
SVD-GCN [17] further simplifies LightGCN by replacing neighbor-
hood aggregation with exploiting K-largest singular vectors for the
close relation between GCN-based and low-rank methods.

5.2 Negative sampling method

Negative sampling in RecSys has gained significant attention due to
its ability to accelerate training and greatly enhance model perfor-
mance. According to a widely accepted classification, these methods
can be categorized into the following groups.

Static Sampler methods sample from an item space that users
have not interacted with using predefined distributions, such as
RNS[10, 19, 25] (random negative sampling) which selects negative
items uniformly or PNS[4] (popularity-biased sampling) which con-
siders item popularity. Hard Negative Sampler techniques like
DNS[35] (dynamic negative sampling) choose items with the high-
est scores from the current recommender, while GAN-based meth-
ods like IRGAN([23] and AdvIR[16] use adversarial learning to gen-
erate negative items and improve robustness. Mixup-based methods
like MixGCF[11] generate new negative items by performing "posi-
tive mixing" and "hop mixing" operations. Auxiliary-based Sam-
plers leverage additional information, such as the knowledge graph
in KGPolicy[26] or Personalized PageRank scores in PinSage[33],
to sample hard negative instances. These approaches serve the
purpose of selecting unexplored items to improve RecSys training.

We categorized the above sampling methods into Point/Line/Area-
wise negative sampling methods. Methods like DNS[35], RNS[19],
etc. directly select items that users have not yet interacted with as
the negatives are categorized as point sampling. On the other hand,
methods like MixGCF[11] and SDNS[20], which employ linear in-
terpolation between negative and positive items, are classified as
line sampling. But DINS introduces a novel approach to perform
area sampling, setting it apart from previous methods. It determines
an optimal negative sampling boundary point, ensuring an appro-
priate negative sampling area that strikes a balance between being
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too large and too small. Subsequently, DINS employs Dimension
Independent Fusion, a process that enables the newly synthesized
negatives to locally approximate the positive items in each embed-
ding dimension and then globally approach the positives. Through
this combination of local approximation and overall approach, the
synthesized negative items effectively retain their negative charac-
teristics while exhibiting an unprecedented level of approximation
to the positive items. This enhancement significantly amplifies the
model’s ability to discern between positive and negative items.

6 CONCLUSION

In conclusion, this paper provides a novel perspective to revisit the
current negative sampling methods based on continuous sampling
area and classifies them into point-wise and line-wise sampling
methods. In a further step, we design the first area-wise sampling
method, named DINS, by proposing the Dimension Independent
Mixup method. DINS can easily support both matrix factorization
and graph-based backbone recommenders. Extensive experiments
demonstrate superior performance compared with other methods,
making it a state-of-the-art solution for negative sampling when
training collaborative filtering with implicit feedback. The con-
tributions of this work include a fresh perspective on negative
sampling methods, the introduction of Area-wise sampling, and
the development of the innovative DINS method. These findings
have the potential to enhance RecSys capabilities and improve user
experiences in various online services.
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