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Abstract
Guaranteeing stable electricity demand forecasting is paramount for the conservation of material resources. However,
because electricity consumption data are often made up of complex and unstable series, it is very hard for a
simple single method to always obtain accurate predictions. To improve electricity demand forecasting robustness and
accuracy, a hybrid empirical mode decomposition and state space model is proposed, for which the empirical mode
decomposition is applied to decompose the total time series (noise filtering), and the state space model is employed to
forecast every sub-series (feature extraction), with the state space model parameters being optimized using maximum
likelihood via a Kalman filter. Compared with autoregressive integrated moving average model and artificial neural
networks, the proposed model had more stable and accurate forecasting. This method could be broadly applied to not
only forecast electricity demand, being a key step for developing electricity generation plans and formulating energy
policy, but also forecast any similar time series data with noise and substantive latent features, making a new step
toward solving such a problem.
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Introduction

As a long-term important hot issue, Electricity demand
forecasting research can date back to Heinemann et al.
(1966). Hobbs et al. (1999) stated that with a reduction
of 1% in the forecasting mean absolute percentage error,
10,000 MW of electricity energy can be saved, which means
as power grid planning, investment and transactions are
based on accurate electricity demand forecasting, an accurate
forecasting model could save up to $1.6 million a year.

Electricity forecast horizons can be short term from an
hour or a week, medium-term from a week to a year, or long-
term for over a year (Jiang et al. 2017; Khuntia et al. 2016).
Medium-term electricity demand forecasting and especially
monthly forecasting is a critical index for many business and
government decision-making processes (Guo et al. 2018),
as it is designed to maintain a balance between supply and
demand (Yang A & X 2018).

Due to the complexity and instability of electricity
consumption data, no one best individual method has
been found to always perform well. However, as ensemble
learning and hybrid methods seek to obtain better forecasting
performance by strategically combining multiple algorithms
(Qiu et al. 2017b), this paper develops a hybrid monthly
electricity demand forecasting model based on empirical
mode decomposition (EMD) and a state space model (SSM),
which will provide a new step for solving time series data
with noise and substantive latent features. The EMD as a
noise filter is applied to decompose the total time series,
and the SSM is employed for the feature extraction and

forecasting of each every sub-series; with the SSM being
optimized using maximum likelihood Kalman filter.

The remainder of this paper is organized as follows.
Section gives a brief literature review, Section introduces
the proposed method, Section reviews the data and
forecasting results, and Section concludes the paper.

Literature review
Modeling and forecasting electricity demand is an indis-
pensable part of demand side management (Shao et al.
2017). Even though researchers have been developing and
enhancing many electricity demand forecast models, they
have been modeled around two main forecasting methods,
individual forecasting and hybrid forecasting.

Individual forecasting models such as time series analysis
and machine learning models have been the most widely
used to date. Time series analysis seeks to extract meaningful
statistics and other characteristics from the time series data
by analyzing the data itself (Qiu et al. 2017a), and therefore
time series models have been widely used for electricity
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load forecasting using linear regression (Papalexopoulos
& Hesterberg 1990), seasonal autoregressive (Mbamalu &
El-Hawary 1993), ARIMA (Chen et al. 1995), threshold
autoregressive (Huang 1997), Kalman filtering (Lynch
et al. 2016), and seasonal autoregressive integrated moving
average methods (SARIMA) (Tarsitano & Amerise 2017).
As it does not account for the exogenous variables, time
series analysis models only require the consumption data to
be complete for the forecasting. Machine learning models,
such as artificial neural networks (Kouhi & Keynia 2013),
support vector machines (Hong 2010), Gaussian process
(Van der Meer et al. 2018), grey forecasting model (Wang
et al. 2018b), Markov model (Xie et al. 2015) and ensemble
learning methods (Burger & Moura 2015) have also been
employed to forecast electricity demand. Although machine
learning models have proven to be very accurate, these
models are unsuitable for analyzing electricity demand as
they are unable to provide any insights into the causes of
structural changes (Takeda et al. 2016).

However, because of the many factors that affect
electricity demand as well as the non-stationary nature
of electricity consumption data, using only one individual
model may not produce good results (Che et al. 2012). To
address this challenge, highly accurate forecasting models
and hybrid technologies have been considered to improve
model performance. Hybrid models, which are an integration
of different models, can improve the forecasting accuracy.
When models are combined, they can capture the different
electricity consumption features and overcome the defects
in the individual models(Zhang et al. 2018). Hybrid models
also have better performance than individual models because
of bias-variance decomposition and strength-correlation (Qiu
et al. 2017a). Therefore, hybrid models have generally
proven to be superior to single models. Hybrid electricity
load forecasting models can be classified into three main
categories.

(1) In the first category models, the electricity demand is
forecast separately by the different models, after which the
weight of each model is calculated using a suitable method.
The final forecasting value can is determined by adding
each model’s forecasting value multiplied by its weight.
Nowotarski et al. (2016) investigate the performance of
combining so-called sister load forecasts which share similar
model structure but are built based on different variable
selection processes. Besides, Xiao et al. (2017) used a multi-
objective flower pollination algorithm (MOPFA) to optimize
the weights of single models that included several artificial
neural networks.

(2) The second model category supposes that there is
a linear part and a nonlinear part. The data are forecast
using the linear model and the residuals checked for a
nonlinear pattern, after which the residuals are forecast using
a nonlinear model; and vise versa. The model’s final forecast
is determined from the sum of the linear and nonlinear
model results. Barak & Sadegh (2016) combined ARIMA
and an Adaptive Neuro Fuzzy Inference System (ANFIS)
and found that there were good in linear and nonlinear
structural performances. Moreover, Wang et al. (2018a,c)
uses the linear ARIMA to correct nonlinear metabolic grey
model forecasting residuals to improve forecasting accuracy.

(3) The third category model decomposes the electricity
consumption data into several sub-series, after which
each sub-series is forecast using a suitable model.
The final forecast results are the sum of each of
the sub-series’ forecasting results. Popular decomposition
technologies are empirical mode decomposition, wavelet
transforms, and Fourier transformation. Li et al. (2016) used
wavelet transformation to decompose original electricity
consumption data into several sub-series, after which each
sub-series was forecast by an extreme learning machine
combined with partial least squares regression, and Zhang
et al. (2018) proposed a hybrid model based on improved
empirical mode decomposition (IEMD), autoregressive
integrated moving average (ARIMA), and a wavelet neural
network (WNN) that had been optimized using a fruit fly
optimization algorithm (FOA).

While EMD, Fourier, and wavelets are all used to
decompose signals, EMD is fundamentally different from the
other two. EMD makes no assumptions a priori about the
composition of the signal. Rather, it uses spline interpolation
between maxima and minima to successively trace out
“Intrinsic Mode Functions”. since it makes no assumptions
about signal, the results might be more meaningful. Also,
since the IMFs can change over time, EMD makes no
assumptions about the stationarity of the signal (or the
signal components) and is therefore better suited to non-
linear signals than either Fourier or Wavelets. This makes
EMD particularly attractive when analyzing signals from
complex systems; for instance in electricity demand analysis.
To increase the efficiency of decomposition, EMD was used
by many researchers (Rios & Mello 2013; Fan et al. 2016;
Liu et al. 2014). (Qiu et al. 2017a) used EMD to decompose
the electricity load into some detail parts and an approximate
part. Then the deep belief network (DBN) model was used
for forecasting. Xiong et al. (2014) used EMD to increase
decomposition efficiency and introduced an EMD-based
support vector regression modeling framework.

Unlike most studies, this paper focused on the basic
characteristics of electricity consumption data; such as
trend, season, cycle, and random effect. In addition, every
IMF and residue component are forecast by SSM next
because a simpler model can make less cost. Therefore,
a simpler calculation and a higher accuracy forecasting
ensemble are constructed to forecast electricity demand.
In addition, one of the advantages of SSMs is that the
individually created models (submodels or components)
can be easily incorporated into a single model (Takeda
et al. 2016). Consequently, SSMs were developed to assess
national electricity demand in France (Dordonnat et al.
2008). Therefore, to capture the different characteristics
and to overcome the shortcomings of a single model, this
paper presents a hybrid combined EMD and SSM model to
forecast monthly electricity demand, which has the following
advantages.

(1) To more accurately and effectively extract the
electricity demand characteristics, the EMD is used to
reduce information loss, which has rarely been discussed in
electricity demand decomposition research.

(2) Based on its specific features and fit characteristics
in the original electricity consumption, each sub-series
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decomposed from the original electricity consumption is
forecast using a suitable SSM.

Methodology
Because of the specific monthly electricity consumption data
characteristics, this section presents the key components for
the proposed forecasting method (EMD-SSM). The EMD
extraction process first deals with the noise filtering, after
which the SSM model combined with the EMD interpolates
and extrapolates the latent components such as the trends,
seasonal effects and irregularities.

Noise filtering (EMD)
Known as the Hilbert-Huang transformation (HHT) (Huang
et al. 1998), EMD, an empirical approach to obtaining
instantaneous frequency data from non-stationary and
nonlinear data sets, decomposes a signal into several intrinsic
mode functions (IMF) and a residue.

As it is influenced by several factors, electricity
consumption is a random, non-stationary process composed
of thousands of individual components, with the data having
trend, season, cycle, and random effect characteristics;
therefore, the EMD algorithm can be very effective for noise
filtering.

An IMF is a function that has only one extreme between
zero crossings and a mean value of zero. The shifting process
EMD uses to decompose the signal into IMFs is described in
the following:

(1) For a time series x(t), let m1 be the mean of its
upper and lower envelopes as determined by a cubic-spline
interpolation of the local maxima and minima.

(2) The first component h1 is computed by subtracting the
mean from the original time series: h1 = x(t)−m1.

(3) In the second shift process, h1 is treated as the data,
and m11 is the mean of h1’s upper and lower envelopes:
h11 = h1 −m11.

(4) This shifting procedure is repeated k times until one
of the following stop criterion is satisfied: i) m1k approaches
zero, ii) the number of zero-crossings and extrema for h1k

differs at most by one, or iii) the predefined maximum
iteration is reached. h1k can be treated as an IMF in this case
and computed by: h1k = h1(k−1) −m1k.

(5) Then it is designated c1 = h1k, the first IMF
component from the data, which contains the shortest signal
period component, which is then separated from the rest of
the data: x(t)− c1 = r1. This procedure is repeated for rj :
r1 − c2 = r2, . . . , rn−1 − cn = rn.

As a result, the original time series signal is decomposed
into a set of functions: x(t) =

∑n
i=1(ci) + rn, where the

number of functions n in the set depends on the original
signal.

Feature extraction (SSM)
SSM, also known as Kalman filtering, was first introduced
by Kalman (Kalman 1960). State-space models consist of
two equations to simultaneously account for two variation
distinct sources: the state equation (latent process) deals with
the process uncertainty caused by the unobserved factors,
and the observation model incorporates the effect of the error

caused by the mismeasurement of outcomes. The general
form for a state-space model is as follows.{

Observation equation: Yt = Ztαt + εt,

State transition equation: αt+1 = Ttαt + ηt+1,
(1)

where n ∗ 1 vector αt is the state vector, denoting the state
at time t; and k ∗ 1 vector yt is the observations at time t;
and εt and ηt are the observation and state noises, which
are respectively drawn from Gaussian distributions with zero
means, variances of Rt and Qt, and St covariances. The
n ∗ n matrix Tt called the transition matrix and the k ∗ n
matrix Zt called the output matrix in Eq. (1) are referred
to as the system matrices with appropriate dimensions.

It is well known in the time series analysis that unobserved
components models has been proven to be very effective
(Koopman & Ooms 2006; Golpe et al. 2012; Mnif 2017).
And a very successful and widely accepted unobserved
components model comprises trend, cycles, seasonal and
irregular components (Pedregal & Young 2006). Hereafter,
the SSM model is employed to forecast each sub-series, the
general form for which is:

yt = µt + γt + ct + εt,

where yt is the observation vector at time t, µt is the trend
component, γt is the seasonal component, ct is the cycle
component, and εt is an irregular component. The modeling
details for these components are described in the following.

The trend component is a dynamic regression model
extension that includes an intercept and linear time-trend and
is given as::

µt = µt−1 + βt−1 + ηt−1,

βt = βt−1 + ζt−1,

where the level is a generalization of an intercept term
that can dynamically vary across time, and the trend is
a generalization of the time-trend so that the slope can
dynamically vary across time; ηt ∼ N(0, σ2

η) and ζt ∼
N(0, σ2

ζ ).
The seasonal component is modeled as:

γt = −
s−1∑
j=1

γt+1−j + ωt,

where s is the number of seasons (12 in monthly data), and
ωt ∼ N(0, σ2

ω). This component results in one parameter to
be selected via maximum likelihood: σ2

ω and one parameter
to be chosen, the number of seasons s.

The cyclical component is intended to capture the cyclical
effects at time frames much longer than those captured by a
seasonal component.

ct+1 = ρc(c̃t cosλct+ c̃∗t sinλc) + ω̃t,

c∗t+1 = ρc(−c̃t sinλct+ c̃∗t cosλc) + ω̃∗
t ,

where ct and c∗t are independent, zero-mean, Gaussian
disturbances with variance σ2

ω , ωt, ω̃t iid N(0, σ2
ω̄), damping

factor ρc can be any value in the interval (0, 1), including
one but excluding zero and parameter λc (the frequency of
the cycle) is an additional parameter to be estimated using
maximum likelihood estimation (MLE).
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An autoregressive component (that is often used as a
replacement for the white noise irregular term):

εt = ρ(L)εt−1 + εt, εt ∼ N(0, σ2
ε ).

In summary, the state space model can be written as follows:

Observation equation: yt = µt + γt + ct + εt,

Transition equation: µt = µt−1 + βt−1 + ηt−1,

βt = βt−1 + ζt−1,

γt = −
s−1∑
j=1

γt+1−j + ωt,

ct+1 = ρc(c̃t cosλct+ c̃∗t sinλc) + ω̃t,

c∗t+1 = ρc(−c̃t sinλct+ c̃∗t cosλc) + ω̃∗
t ,

εt = ρ(L)εt−1 + εt, εt ∼ N(0, σ2
ε ).

EMD-based SSM model
The proposed hybrid EMD and SSM electricity demand
forecasting model decomposes the electricity consumption
data into several IMFs and one residue using the EMD
method, after which the SSM model is applied to each IMF
and the residue. When the forecasting for all sub-series is the
complete, the forecasting results are aggregated by simple
addition to obtain the final forecasting. Fig. 1 shows the
overall schematic for this ensemble method:

(1) The time series data is decomposed using EMD into
several IMFs and one residue.

(2) For each IMF and the residue, one training data is
constructed as the SSM input.

(3) The SSM is then trained to obtain the forecast results
for each of the extracted IMFs and the residue.

(4) All forecast results are added to formulate the
ensemble output for the time series.

Error Measurement
As suggested by Taylor (2010) and Shaikh & Ji (2016),
forecast model performance can be evaluated using the
absolute relative error (ARE), the root-mean-square error
(RMSE), the mean absolute error (MAE) and the mean
absolute percentage error (MAPE), each of which is defined
as follows.

MAE =
1

n

n∑
i=1

|yi − ŷi| , RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2,

ARE =

∣∣∣∣ ŷi − yiyi

∣∣∣∣ , MAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ ,
where ŷi is the forecast value of the corresponding yi, and n
is the number of data points in the testing time series.

Results and Discussion

Data handling
This study was based on electricity consumption data
from January 2007 to October 2010 in Sichuan Province,
China. The data sets were generated by the Electricity
Saving Association, which is the major source of power

data in the province and covers almost all sectors of
the economy. Total electricity consumption was composed
of residential and nonresidential (industrial, transportation,
manufacturing, and information service) electricity demand
consumption. To make the results more convincing, all
electricity consumption variables; that is, the total electricity
consumption and its components were forecast. For a fair
comparison analysis, each consecutive three months in 2010
were used as test set and the 36 months before the test
month was used as training set. The specific data divisions
are shown in Table 1.

Table 1. Data division

Training set Test set

Training set 1: 2007.01-2009.12 Test set 1: 2010.01-03
Training set 2: 2007.02-2010.01 Test set 1: 2010.02-04
Training set 3: 2007.03-2010.02 Test set 1: 2010.03-05
Training set 4: 2007.04-2009.03 Test set 1: 2010.01-06
Training set 5: 2007.05-2009.04 Test set 1: 2010.01-07
Training set 6: 2007.06-2009.05 Test set 1: 2010.01-08
Training set 7: 2007.07-2009.06 Test set 1: 2010.01-09
Training set 8: 2007.08-2009.07 Test set 1: 2010.01-10
Training set 9: 2007.09-2009.08 Test set 1: 2010.09
Training set 10: 2007.10-2009.09 Test set 1: 2010.10

Model adaptability

Fig. 2 shows that mixed with various of signals (trend,
season and cycle), the original data seems to be volatile
and unstable. EMD first is used to decomposed original
electricity consumption for noisy filtering. Fig. 3 shows
the decomposition results by EMD for training set
1. After decomposition, every subseries is stable with
different feathers; for example, cycle in 3decomposition
and 4decomposition, trend in 5decomposition. SSM then is
used to fit every subseries for feature extraction. Finally,
the forecast model could be obtained by adding all sub-
models. The adaptability of the proposed method for total
electricity consumption is shown in Fig. 4 and Table 2.
The adopted modelling approaches were found to be a good
fit for the training sets. Fig. 4 shows the results of EMD-
SSM for the three-period-ahead total demand forecasting
for training sets 1 ∼ 4. Satisfactory results were obtained
using the proposed method as the shape of the forecast
curves were very similar to the shape of the actual curves.
Starting at zero, the fitting curves were poor for the first
few points; therefore, all measurements (in Table 2) were
calculated using the remaining 26 consumption data. Table
2 shows the results for the three error measurements for total
electricity consumption in the training sets. As all MAPEs
were lower than 0.03 and the MAEs and RMSEs were also
low, the proposed method was in a good fit for the total power
consumption in the training sets.

To verify the adaptability of EMD-SSM, one-period-ahead
forecasting was conducted for different electricity variables
using ten test sets (Table 3). As shown, nearly 100% of the
ARE outputs for the total power demand forecasting were
lower than 0.1 and 70% were lower than 0.05. For the other
electricity variables, most ARE outputs were lower than 5%
or around 5% and only several were higher than 0.1, all
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Figure 1. Schematic diagram of the proposed EMD-SSM method

Table 3. One-period-ahead AREs of EMD-SSM for each month in 2010 (for testing sets)

Electricity variable Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct.

Total 0.015 0.037 0.014 0.096 0.040 0.105 0.008 0.048 0.046 0.052
Nonresidential 0.037 0.066 0.024 0.041 0.035 0.125 0.057 0.030 0.026 0.006
Residential 0.030 0.030 0.108 0.044 0.078 0.011 0.100 0.109 0.047 0.144
Industry 0.066 0.072 0.083 0.077 0.011 0.062 0.100 0.007 0.039 0.018
Transportation 0.013 0.018 0.049 0.076 0.019 0.017 0.004 0.034 0.045 0.051
Manufacturing 0.147 0.123 0.033 0.035 0.028 0.097 0.018 0.016 0.091 0.093
Information service 0.022 0.081 0.012 0.078 0.023 0.065 0.165 0.100 0.101 0.009
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Figure 2. Total electricity consumption from 2007.01 to 2010.12

Table 2. Adaptability of the proposed method for total power
consumption (for training sets)

Training set MAPE MAE RMSE

Training set 1 0.025559574 24435.23271 32185.59497
Training set 2 0.026291536 25172.88265 30662.9301
Training set 3 0.023462413 22691.31679 27795.67893
Training set 4 0.028083031 26454.65447 42586.04947
Training set 5 0.021264841 20716.21956 25108.66479
Training set 6 0.023301599 23450.06357 29007.42461
Training set 7 0.019287419 19597.95449 25375.25747
Training set 8 0.019326223 19681.43743 23459.46975
Training set 9 0.021036301 22204.09311 31201.56442

Training set 10 0.019359572 20131.52036 23643.17369

of which indicated that the EMD-SSM was able to achieve
precise and stable forecasting.

The other statistical results in Table 4 further illustrate
the performance of the proposed model. The proposed
model performed well for the different electricity variables
as there were low average values and ARE variances.
The maximum AREs were lower than 0.1 for the total,
industry, and transportation power consumption, indicating
satisfactory results. However, the results were unsatisfactory
for residential, manufacturing and information service
electricity demand forecasting as the maximum ARE were
respectively 0.144, 0.147 and 0.165. These results can be
explained by the amount of training data available for
each electricity variable; that is, there was a large amount
of training data for the total, industry, and transportation
power consumption, but significantly less for the residential,
manufacturing and information service power consumption.
Despite these results, according to Williams (2013), actual
power generation must be able to accommodate up to a 15%
increase in extra demand at any time, which means that even
in the worst situation, the proposed method is in the highly
accurate and stable forecast range.

Comparison analysis with benchmark methods
Well-known and accurate, benchmark methods are very
useful when seeking to understand relative accuracy and
can assist in identifying the weaker areas in proposed
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Table 4. Statistical ARE values for the different electricity variables (one-period-ahead)

Electricity variable Average value Variance Minimum Maximum

Total 0.046 0.0010 0.008 0.105
Nonresidential 0.044 0.0010 0.001 0.125
Residential 0.070 0.0018 0.011 0.144
Industry 0.054 0.0011 0.007 0.100
Transportation 0.032 0.0005 0.004 0.076
Manufacturing 0.068 0.0022 0.016 0.147
Information service 0.066 0.0025 0.009 0.165

models (Takeda et al. 2016). Over the years, various
forecasting models have been developed in literature, of
which the ARIMA and ANN are widely popular. ARIMA
models are well-known for their notable forecasting accuracy
and flexibility in representing several different types of
time series (Khandelwal et al. 2015). Meanwhile, ANN
is proved to be suitful for complex nonlinear time series
modeling (Gnay 2016). To further substantiate EMD-SSM
the forecasting results, comparison analyses with three
benchmark methods; ARIMA, ANN-1 (with 1 hidden layer)
and ANN-2 (with 2 hidden layer); were conducted.

The basic steps for the ARIMA are as follows: first,
the nonstationary series is transformed to a stationary
series using differencing, after which p (the order of the
autoregressive part) and q (the order of the moving-average
process) are determined using using ACF and PACF, and
the optimal model determined by checking for white noise
residuals. The ANN models use the six month electricity
consumption prior to the three months to be forecast as the
input data and has six input neurons, twelve hidden neurons
for each hidden layer, and three output neurons. A rectified
linear unit (ReLU) activation function is used as the hidden
layer activation function, a linear function is used in the
output layer, and adaptive moment estimation (Adam) is used
as the learning algorithm.

To verify the effectiveness of the proposed model, three
electricity demand periods were forecast. Every three months
in 2010 were used as the test set and the 36 months before
the test set was used as the training set. Table 5 presents the
AREs for every month for the test set. As can be seen, the
same training set is used in the same column of Table 5. Table
6 shows the other evaluation criteria for the three months for
every test set using the corresponding training set.

As can be seen in Table 5, the forecast accuracy of the
proposed model was higher than the comparison models. The
ARE for the EMD-SSM was in the range 0.0014–0.1428
which was the narrowest of the four methods. Further, no
matter what the forecast period, the ARE averages for the
proposed method were the lowest (0.455, 0.0608 and 0.0608,
respectively). In addition, as shown in Table 6, the EMD-
SSM achieved the lowest MAPE, MAE and RMSE for most
of the test sets, which indicated that the hybrid model had
the best stability. Both Table 5 and Table 6 demonstrate that
the proposed model had more accurate and stable results
compared to the other models.

To further illustrate the effectiveness of the EMD-SSM,
Table 7 summarizes the number of times the four methods
ranked 1, 2, 3 or 4. The EMD-SSM was ranked 1 three times,
ranked 2 four times, ranked 3 once and was never ranked 4,
again demonstrating the superiority of the proposed model.

Table 7. Number of times the three methods ranked 1, 2, 3 or 4

Rank ARIMA ANN-1 ANN-2 EMD-SSM

1 2 2 1 3
2 1 2 1 4
3 4 2 1 1
4 1 2 4 0

The comparison of the descriptive statistical values for
the different evaluation criterions found that the average
values for the MAPE, MAE and RMSE obtained using the
proposed method were lower than the comparative models
(Table 8). The proposed model accuracy was able to attain an
operational level and outperformed the benchmark methods.
The average MAPE values for the ANN-1 (0.0938), ANN-2
(0.1099) and ARIMA (0.0602) were improved by 40.62%,
49.32% and 7.48% using the proposed model (0.0557).
Further, the MAPE, MPE, and RMSE variances obtained
using the proposed model were all lower than the other
models, further indicating that the proposed hybrid model
stability was superior.

To verify the above, boxplots were drawn to show the
MAPE distribution and are presented in Fig. 5. Even
though there were no significant differences between the
benchmarks and the proposed model, the boxplots show
that the proposed method performed better than the ARIMA
and the ANNs because it achieved the lowest Q25 (25th
percential), median, and Q75 (75th percential) and had the
narrowest inner fence. Table 8 and Fig. 5 demonstrate that
the proposed model was able to provide more accurate and
more stable results than the benchmark models.

To present the advantages of the proposed model with a
deep analysis, Table 6 shows that the ANN-2 achieved the
highest MAPE, MAE and RMSE for most of the test sets.
Moreover, ANN-2 was ranked four times in the four models
as shown in Table 7. Also, Fig. 5 shows that the ANN-2
obtained the stable but very bad results because of the higher
MAPE means, median and the minimum. These all illustrate
that the ANN-2 is not suitable for this data set, which may
be caused by overfitting or local minimum. Meanwhile, all
results show that ANN-1 and ARIMA are also disappointing,
compared with the EMD-SSM. In addition, a further analysis
using original data indicated that when data set size used
to train the simple ANN was altered, there was an obvious
impact on its generalization ability (Moyo & Sibanda 2015;
Foody et al. 1995). Therefore, even though there was a
relatively small 36-month training set for each forecasting
process, the proposed model still performed well, which
indicated that the EMD-SSM could perform well on smaller
data sets.

Prepared using sagej.cls



Zhineng Hu et al 7

Table 5. AREs for the different methods for each month in 2010 (for test sets)

One-period-ahead Jan. Feb. Mar. Apr. May June July Aug. Average

ARIMA 0.0816 0.0438 0.0346 0.0983 0.0207 0.1073 0.0273 0.0056 0.0524
ANN-1 0.0353 0.0235 0.0555 0.1595 0.0136 0.2705 0.0809 0.0886 0.0909
ANN-2 0.0416 0.0287 0.0480 0.0767 0.0508 0.0203 0.0961 0.1000 0.0578
EMD-SSM 0.0147 0.0368 0.0140 0.0963 0.0398 0.1054 0.0082 0.0484 0.0455

Two-period-ahead Feb. Mar. Apr. May June July Aug. Sep. Average

ARIMA 0.0606 0.0895 0.0611 0.1004 0.0946 0.0924 0.0250 0.0205 0.0680
ANN-1 0.0075 0.0031 0.1612 0.0487 0.0025 0.2723 0.0849 0.1798 0.0950
ANN-2 0.2358 0.1094 0.0846 0.0513 0.0225 0.0825 0.1550 0.1353 0.1096
EMD-SSM 0.0014 0.0542 0.0638 0.0970 0.0870 0.1111 0.0019 0.0700 0.0608

Three-period-ahead Mar. Apr. May June July Aug. Sep. Oct. Average

ARIMA 0.0274 0.0086 0.0626 0.1959 0.0777 0.0966 0.0116 0.0101 0.0613
ANN-1 0.0284 0.0551 0.0272 0.0567 0.0379 0.2292 0.1592 0.1704 0.0955
ANN-2 0.0129 0.1834 0.0906 0.1866 0.1944 0.1630 0.2654 0.2036 0.1625
EMD-SSM 0.0488 0.0302 0.0778 0.1428 0.0326 0.0738 0.0687 0.0121 0.0608

Table 6. Different evaluation criterion for the different models (for test sets)

test set 1 test set 2

method MAPE MAE RMSE method MAPE MAE RMSE

ARIMA 0.0565 54935 59398 ARIMA 0.0473 44982 54401
ANN-1 0.0237 22900 25661 ANN-1 0.0272 27561 35497
ANN-2 0.0968 93681 133884 ANN-2 0.1072 106668 125576
EMD-SSM 0.0216 20501 27642 EMD-SSM 0.0404 39196 40071

test set 3 test set 4

method MAPE MAE RMSE method MAPE MAE RMSE

ARIMA 0.0528 53638 55713 ARIMA 0.1316 145497 157277
ANN-1 0.0813 82382 102232 ANN-1 0.0883 94165 106898
ANN-2 0.0744 75658 78767 ANN-2 0.1049 117320 138024
EMD-SSM 0.0519 53426 60868 EMD-SSM 0.1120 122830 126851

test set 5 test set 6

method MAPE MAE RMSE method MAPE MAE RMSE

ARIMA 0.0611 74228 83492 ARIMA 0.0988 115382 115649
ANN-1 0.0180 20319 26696 ANN-1 0.2573 300427 301295
ANN-2 0.0893 101616 134572 ANN-2 0.0886 103432 123977
EMD-SSM 0.0532 60491 67303 EMD-SSM 0.0968 112949 114528

test set 7 test set 8

method MAPE MAE RMSE method MAPE MAE RMSE

ARIMA 0.0213 24913 26133 ARIMA 0.0121 14239 16091
ANN-1 0.1083 127677 135072 ANN-1 0.1463 172002 178783
ANN-2 0.1722 203116 220248 ANN-2 0.1463 171641 178588
EMD-SSM 0.0263 31241 47661 EMD-SSM 0.0435 51383 58809

Table 8. Descriptive statistics for the different evaluation criteria for the different methods

Method Criterion Average value Variance Minimum Maximum

ARIMA MAPE 0.0602 0.0015 0.0121 0.1316
MAE 65976 44578 14238 145497

RMSE 71019 46698 16091 157277

ANN-1 MAPE 0.0938 0.0064 0.0179 0.2573
MAE 105929 95413 20319 300427

RMSE 114017 93730 25661 301295

ANN-2 MAPE 0.1099 0.001 0.0744 0.1722
MAE 121641 1858543370 75658 203116

RMSE 141704 1741510642 78767 220248

EMD-SSM MAPE 0.0557 0.0010 0.0216 0.1120
MAE 61502 37170 20501 122830

RMSE 67967 35024 27642 126851
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Figure 3. The decomposition results by EMD for training set 1
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Figure 4. Adaptability of the proposed method

Conclusion

For monthly electricity demand forecasting, a long-term
important hot issue, this paper proposed a hybrid model ,
formulating an empirical mode decomposition-based state
space model. (1) Empirical mode decomposition was
introduced for noise filtering in the original electricity
consumption, from which several IMFs with one residue
were obtained. After decomposition, every IMF shows
obvious features, such as trends, cycles and seasoning. (2)
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Figure 5. Boxplot for the MAPE distribution

The state space model was used to extract the latent features
of each IMFs as well as the residue. (3) The electricity
demand forecasting was then obtained through ensemble
learning. Electricity consumption data from the Electricity
Saving Association of Sichuan Province in China were used
to demonstrate the performance of the proposed model, with
all results indicating that the proposed model was able to
improve electricity demand forecasting accuracy compared
to the ARIMA and ANN models.

Based on the common forecast model performance
evaluation together with statistical comparison analysis,
four facts clearly emerged from the results: (1) EMD
can effectively reduce original electricity consumption data
noise; (2) the state space model can flexibly extract the time
series features and fit well with the decomposed components;
(3) by harnessing the advantages of both the EMD and SSM,
the hybrid model is able to capture the different features
associated with electricity demand; and (4) the EMD-SSM
also performs well on small data sets. The EMD-SSM
method was firstly proposed by combining the advantages of
EMD and SSM, and the results indicated that the ensemble-
learning method is valid and achieves good performance.

Obviously, although this paper was focused on the
forecasting of monthly series data sets, the methods shown
here could also be applied to quarterly or yearly data.
Basically, this paper provided a new step for any time
series data with noise and substantive latent features, within
electricity demand forecasting or in other similar forecast
fields. And the approach applied in this work can be
implemented for other provinces or countries to make
accurate predictions for the future. The results stated that the
proposed methods, dealing with noise filtering and feature
extracting, have the potential to generate growth in an
important new forecast sub-area that may be small now but
is expected to grow. For example, to further improve the
forecast power, different models such as machine learning
methods could be used on decomposed series.
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