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Abstract: Identifying a set of influential nodes is an important topic in complex networks which plays
a crucial role in many applications, such as market advertising, rumor controlling, and predicting
valuable scientific publications. In regard to this, researchers have developed algorithms from simple
degree methods to all kinds of sophisticated approaches. However, a more robust and practical
algorithm is required for the task. In this paper, we propose the EnRenew algorithm aimed to identify
a set of influential nodes via information entropy. Firstly, the information entropy of each node is
calculated as initial spreading ability. Then, select the node with the largest information entropy and
renovate its l-length reachable nodes’ spreading ability by an attenuation factor, repeat this process
until specific number of influential nodes are selected. Compared with the best state-of-the-art
benchmark methods, the performance of proposed algorithm improved by 21.1%, 7.0%, 30.0%, 5.0%,
2.5%, and 9.0% in final affected scale on CEnew, Email, Hamster, Router, Condmat, and Amazon
network, respectively, under the Susceptible-Infected-Recovered (SIR) simulation model. The
proposed algorithm measures the importance of nodes based on information entropy and selects
a group of important nodes through dynamic update strategy. The impressive results on the SIR
simulation model shed light on new method of node mining in complex networks for information
spreading and epidemic prevention.

Keywords: complex networks; influential nodes; information entropy; SIR model

1. Introduction

Complex networks are common in real life and can be used to represent complex systems in
many fields. For example, collaboration networks [1] are used to cover the scientific collaborations
between authors, email networks [2] denote the email communications between users, protein-DNA
networks [3] help people gain a deep insight on biochemical reaction, railway networks [4] reveal
the structure of railway via complex network methods, social networks show interactions between
people [5,6], and international trade network [7] reflects the products trade between countries.
A deep understanding and controlling of different complex networks is of great significance in
information spreading and network connectivity. On one hand, by using the influential nodes, we can
make successful advertisements for products [8], discover drug target candidates, assist information
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diffusion [9], and even detect essential proteins [10]. On the other hand, by removing some critical
nodes, it can greatly reduce the connectivity of the network to restrain the outbreak of epidemics [11]
or spreading of rumors [12].

The ongoing COVID-19 epidemics is catching wide attention around the world. Every country
is making enormous effort to control the virus spreading. By analyzing social networks, it would be
easier for us to control epidemics spreading. In the last decades, propagation dynamics has always
been an important research direction. Many mechanisms, such as epidemic spreading [13–16], rumor
propagation [17,18], social sudden events spreading [19], and e-commercial advertisements, are all
closely related to complex network dynamics. Early in 1760, Daniel Bernoulli studied smallpox vaccine
by using ordinary differential equations, and gave the Bernoulli equations [20] , which is one of the
earliest propagation dynamics models. Later, Hamer presented the mass-action principle [21,22]
when studying the recurring epidemics of measles. A.G. McKendrick and W.O. Kermack formulated
a famous modern mathematical epidemic model named the Susceptible-Infected-Recovered (SIR)
compartmental model when studying the spreading pattern of the Black Death and the plague
in 1906. SIR compartmental model successfully predicted the outbreak of several epidemics [23].
Harding et al. [24] followed the maximum entropy (MaxEnt) principle when simulating on the SIS
model to study epidemics spreading on networks. Wang et al. [25] used entropy to incorporate many
related factors, and designed a rumor spreading model. Zenil et al. [26] used algorithmic information
content to steer the controlling of complex systems. By analyzing airline network data, Brockmann et al.
identified the origin place of epidemics [27]. Pastor et al. summarized the methods and models in
propagation dynamics [13], providing theoretical support for predicting and controlling propagation.

Identifying a set of influential spreaders in complex networks plays a crucial part in target
advertisement, epidemics and rumor control. One naive method is to select top k ranked nodes
as spreaders according to ranking methods. Lately, there have been many ranking methods to
this problem. Some methods consider node’s local information, such as degree centrality, and its
extending measures [28]. Degree centrality counts the number of node’s direct neighbors as its
influence. H-index [29] considers 2-nd order neighbors as node’s importance. Based on degree
centrality, LocalRank [30] takes node’s 4-th order neighbors into account. ClusterRank [31] combines
Degree centrality and clustering coefficient [32] to measure node’s importance in spreading. Coreness
centrality [33] decomposes graph by K-shell method, and it selects nodes based on their location within
the graph. Zeng and Zhang [34] presented algorithm to rank nodes by decomposing networks in a
mixed degree decomposition procedure. There are also some path-based methods to quantify nodes’
importance, such as Eccentricity centrality [35], Closeness centrality [36], Betweenness centrality [37],
and Katz centrality [38]. These methods suffer from relatively high computational cost for calculating
shortest path between nodes. Considering the mutual enhancement [39], researchers put forward
Eigenvector centrality [40] and cumulative nomination algorithm [41]. Besides, random walk based
methods have also been proposed, such as the famous PageRank [42] and LeaderRank [43]. Information
entropy has also been used as importance indicator to measure nodes’ importance [44,45]. Qiao et al.
proposed entropy centrality [46,47] to measure the potential for communication activity between
node pair. Ai assumes that the removal of a more important node is likely to cause more structural
variation. So he measured node importance by entropy variation [48] which calculates the change of
graph entropy when that node is removed. In order to capture a wider range and greater abundance
of information, Li et al. put forward entropy and mutual information-based centrality approach
(EMI) [49] to take both topological and digital network characteristics into account. Fei et al. used
relative entropy [50] to choose appropriate centrality measures when dealing with different networks.
Zareie et al. [51] ranked nodes in social networks based on nodes’ spreading capability by information
entropy. Shetty et al. [52] used entropy to detect influential nodes in low-level, incomplete and noisy
social network. By combining the advantages of degree centrality, efficiency centrality, betweenness
centrality and correlation centrality through entropy, Fan et al. proposed correlation centrality
index [53] to quantify node’s importance. Recently, entropy has also been used to rank nodes in
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weighted networks [54] and social networks [55]. However, the node set built by simply assembling
the nodes and sorting them employed by the aforementioned methods may not be comparable to an
elaborately selected set of nodes due to the rich club phenomenon [56], namely, important nodes tend
to overlap with each other. Thus, lots of methods aim to directly select a set of nodes are proposed.

Kempe et al. defined the problem of identifying a set of influential spreaders in complex networks
as influence maximization problem [57], and they used hill-climbing based greedy algorithm that is
within 63% of optimal in several models. Greedy method [58] is usually taken as the approximate
solution of influence maximization problem, but it is not efficient for its high computational cost.
Chen et al. [58] proposed NewGreedy and MixedGreedy method. Borgatti [59] specified mining
influential spreaders in social networks by two classes: KPP-POS and KPP-NEG, based on which
he calculated the importance of nodes. Narayanam et al. [60] proposed SPIN algorithm based on
Shapley value to deal with information diffusion problem in social networks. Although the above
greedy based methods can achieve relatively better result, they would cost lots of time for Monte
Carlo simulation. So more heuristic algorithms were proposed. Chen et al. put forward simple
and efficient DegreeDiscount algorithm [58] in which if one node is selected, its neighbors’ degree
would be discounted. Zhang et al. proposed VoteRank [61] which selects the influential node set
via a voting strategy. Zhao et al. [62] introduced coloring technology into complex networks to
seperate independent node sets, and selected nodes from different node sets, ensuring selected
nodes are not closely connected. Hu et al. [63] and Guo et al. [64] further considered the distance
between independent sets and achieved a better performance. Bao et al. [65] sought to find dispersive
distributed spreaders by a heuristic clustering algorithm. Zhou [66] proposed an algorithm to find a
set of influential nodes via message passing theory. Ji el al. [67] considered percolation in the network
to obtain a set of distributed and coordinated spreaders. Researchers also seek to maximize the
influence by studying communities [68–73]. Zhang [74] seperated graph nodes into communities by
using K-medoid method before selecting nodes. Gong et al. [75] divided graph into communities of
different sizes, and selected nodes by using degree centrality and other indicators. Chen et al. [76]
detected communities by using SHRINK and Kcut algorithm. Later they selected nodes from different
communities as candidate nodes, and used CDH method to find final k influential nodes. Recently,
some novel methods based on node dynamics have been proposed which rank nodes to select
influential spreaders [77,78]. Şirag Erkol et al. made a systematic comparison between methods
focused on influence maximization problem [79]. They classify multiple algorithms to three classes,
and made a detailed explanation and comparison between methods. More algorithms in this domain
are described and classified clearly by Lü et al. in their review paper [80].

Most of the non-greedy strategy methods suffer from a possibility that some spreaders are
so close that their influence may overlap. DegreeDiscount and VoteRank use iterative selection
strategy. After a node is selected, they weaken its neighbors’ influence to cope with the rich club
phenomenon. However, these two algorithms roughly induce nodes’ local information. Besides,
they do not further make use of the difference between nodes when weakening nodes’ influence.
In this paper, we propose a new heuristic algorithm named EnRenew based on node’s entropy to
select a set of influential nodes. EnRenew also uses iterative selection strategy. It initially calculates
the influence of each node by its information entropy (further explained in Section 2.2), and then
repeatedly select the node with the largest information entropy and renovate its l-length reachable
nodes’ information entropy by an attenuation factor until specific number of nodes are selected.
Experiments show that the proposed method yields the largest final affected scale on 6 real networks in
the Susceptible-Infected-Recovered (SIR) simulation model compared with state-of-the-art benchmark
methods. The results reveal that EnRenew could be a promising tool for related work. Besides, to make
the algorithm practically more useful, we provide EnRenew’s source code and all the experiments
details on https://github.com/YangLiangwei/Influential-nodes-identification-in-complex-networks-
via-information-entropy, and researchers can download it freely for their convenience.

https://github.com/YangLiangwei/Influential-nodes-identification-in-complex-networks-via-information-entropy
https://github.com/YangLiangwei/Influential-nodes-identification-in-complex-networks-via-information-entropy
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The rest of paper is organized as follows: The identifying method is presented in Section 2.
Experiment results are analyzed and discussed in Section 3. Conclusions and future interest research
topics are given in Section 4.

2. Methods

2.1. Spreading Model

The best way to measure the influence of a set of nodes in complex networks is through
propagation dynamic process on real life network data. A susceptible infected removed model
(SIR model) is initially used to simulate the dynamic of disease spreading [23]. It is later widely used
to analyze similar spreading process, such as rumor [81] and population [82]. In this paper, the SIR
model is adopted to objectively evaluate the spreading ability of nodes selected by algorithms. Each
node in the SIR model can be classified into one of three states, namely, Susceptible nodes (S), Infected
nodes (I), and Recovered nodes (R). At first, set initial selected nodes to infected status and all others
in network to susceptible status. In each propagation iteration, each infected node randomly choose
one of its direct neighbors and infect it with probability µ. In the meantime, each infected node will be
recovered with probability β and won’t be infected again. In this study, λ = µ

β is defined as infected
rate, which is crucial to the spreading speed in the SIR model. Apparently, the network can reach a
steady stage with no infection after enough propagation iterations. To enable information spreads
widely in networks, we set µ = 1.5µc, where µc =

〈k〉
〈k2〉−〈k〉 [83] is the spreading threshold of SIR, 〈k〉 is

the average degree of network. When µ is smaller than µc, spreading in SIR could only affect a small
range or even cannot spread at all. When it is much larger than µc, nearly all methods could affect
the whole network, which would be meaningless for comparison. Thus, we select µ around µc on the
experiments. During the SIR propagation mentioned above, enough information can be obtained to
evaluate the impact of initial selected nodes in the network and the metrics derived from the procedure
is explained in Section 2.4.

2.2. EnRenew Algorithm

The influential nodes selecting algorithm proposed in this paper is named EnRenew, deduced
from the concept of the algorithm. EnRenew introduces entropy and renews the nodes’ entropy
through an iterative selection process. EnRenew is inspired by VoteRank algorithm proposed by
Zhang et al. [61], where the influential nodes are selected in an iterative voting procedure. VoteRank
assigns each node with voting ability and scores. Initially, each node’s voting ability to its neighbors
is 1. After a node is selected, the direct neighbors’ voting ability will be decreased by 1

〈k〉 , where

〈k〉 = 2∗m
n is the average degree of the network. VoteRank roughly assigns all nodes in graph with the

same voting ability and attenuation factor, which ignores node’s local information. To overcome this
shortcoming, we propose a heuristic algorithm named EnRenew and described as follows.

In information theory, information quantity measures the information brought about by a specific
event and information entropy is the expectation of the information quantity. These two concepts are
introduced into complex network in Reference [44–46] to calculate the importance of node. Information
entropy of any node v can be calculated by:

Ev = ∑
u∈Γv

Huv = ∑
u∈Γv

−puv log puv, (1)

where puv = du
∑l∈Γv dl

, ∑l∈Γv plv = 1, Γv indicates node v’s direct neighbors, and du is the degree of node
u. Huv is the spreading ability provided from u to v. Ev is node v’s information entropy indicating its
initial importance which would be renewed as described in Algorithm 1. A detailed calculating of
node entropy is shown in Figure 1.
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E1 =1.312

3

4

5

H31=0.37

H41=0.27

H51=0.35

H21=0.32

Figure 1. It shows how the red node’s (node 1) entropy is calculated in detail. Node 1 has four
neighbors from node 2 to node 5. Node 1’s information entropy is then calculated by E1 = H21 + H31 +

H41 + H51 = 0.32 + 0.37 + 0.27 + 0.35 = 1.31.

Algorithm 1: EnRenew
Input: number of initial spreaders num, Graph G = (V, E) with V = {v1, . . . , vn} and

E = {e1, . . . , em}
Output: S contains num spreaders

//Initialization;

S = ∅

for (u, v) ∈ E do
puv = du

∑l∈Γv dl

Huv = −puv log puv

end

//Selecting spreaders;

while |S| < num do

for v ∈ V do
Ev = ∑u∈Γv Huv

end

add v to S, where v = arg maxv∈V Ev

V ← V\{v}
for v’s l-length reachable node ul (1 ≤ l ≤ diameter(G), u0 = v) do

Hul−1ul− = 1
2l−1

Hul−1ul
E〈k〉

end

end

Output S;

Simply selecting the nodes with a measure of degree as initial spreaders might not achieve good
results. Because most real networks have obvious clumping phenomenon, that is, high-impact nodes
in the network are often connected closely in a same community. Information cannot be copiously
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disseminated to the whole network. To manage this situation, after each high impact node is selected,
we renovate the information entropy of all nodes in its local scope and then select the node with the
highest information entropy, the process of which is shown in Algorithm 1.

E〈k〉 = −〈k〉 · 1
〈k〉 · log 1

〈k〉 and 〈k〉 is the average degree of the network. 1
2l−1 is the attenuation

factor, the farther the node is from node v, the smaller impact on the node will be. E〈k〉 can be seen as
the information entropy of any node in 〈k〉-regular graph if 〈k〉 is an integer.

From Algorithm 1, we can see that after a new node is selected, the renew of its l-length reachable
nodes’ information entropy is related with H and E〈k〉, which reflects local structure information and
global network information, respectively. Compared with VoteRank, EnRenew replaces voting ability
by H value between connected nodes. It induces more local information than directly set voting
ability as 1 in VoteRank. At the same time, EnRenew uses H

E〈k〉
as the attenuate factor instead of 1

〈k〉 in
VoteRank, retaining global information.

2.3. Computational Complexity Analysis

Computational complexity (usually time complexity) is used to describe the relationship between
the input of different scales and the running time of the algorithm. Generally, brute force can solve
most problems accurately, but it cannot be applied in most scenarios because of its intolerable time
complexity. Time complexity is an extremely important indicator of an algorithm’s effectiveness.
Through analysis, the algorithm is proved to be able to identify influential nodes in large-scale
network in limited time. The computational complexity of EnRenew can be analyzed in three parts,
initialization, selection and renewing. n, m and r represent the number of nodes, edges and initial
infected nodes, respectively. At start, EnRenew takes O(n · 〈k〉) = O(m) for calculating information
entropy. Node selection selects the node with the largest information entropy and requires O(n),
which can further be decreased to O(log n) if stored in an efficient data structure such as red-black tree.
Renewing the l-length reachable nodes’ information entropy needs O(〈k〉l) = O(ml

nl ). As suggested

in Section 3.3, l = 2 yields impressive results with O(m2

n2 ). Since selection and renewing parts need
to be performed r times to get enough spreaders,the final computational complexity is O(m + n) +
O(r log n) + O(r〈k〉2) = O(m + n + r log n + rm2

n2 ). Especially, when the network is sparse and r � n,
the complexity will be decreased to O(n).

2.4. Performance Metrics

The algorithm’s performance is measured by the selected nodes’ properties including its spreading
ability and location property. Spreading ability can be measured by infected scale at time t F(t) and final
infected scale F(tc), which are obtained from SIR simulation and widely used to measure the spreading
ability of nodes [61,84–88]. LS is obtained from selected nodes’ location property by measuring their
dispersion [61].

Infected scale F(t) demonstrates the influence scale at time t and is defined by

F(t) =
nI(t) + nR(t)

n
, (2)

where nI(t) and nR(t) are the number of infected and recovered nodes at time t, respectively. At the
same time step t, larger F(t) indicates more nodes are infected by initial influential nodes, while a
shorter time t indicates the initial influential nodes spread faster in the network.

F(tc) is the final affected scale when the spreading reaches stable state. This reflects the final
spreading ability of initial spreaders. The larger the value is, the stronger the spreading capacity of
initial nodes. F(tc) is defined by:

F(tc) =
nR(tc)

n
, (3)

where tc is the time when SIR propagation procedure reaches its stable state.
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LS is the average shortest path length of initial infection set S. Usually, with larger LS, the initial
spreaders are more dispersed and can influence a larger range. This can be defined by:

LS =
1

|S|(|S| − 1) ∑
u,v∈S,u 6=v

lu,v, (4)

where lu,v denotes the length of the shortest path from node u to v. If u and v is disconnected,
the shortest path is replaced by DGC + 1, where DGC is the largest diameter of connected components.

3. Results and Discussions

3.1. An Example Network

An example network shown in Figure 2 is used to show the rationality of nodes the proposed
algorithm chooses. The first three nodes selected by EnRenew is distributed in three communities,
while those selected by the other algorithms are not. We further run the SIR simulation on the example
network with EnRenew and other five benchmark methods. The detailed result is shown in Table 1 for
an in-depth discussion. This result is obtained by averaging 1000 experiments.

1

2

3

4

5

7

6

8

9

12 15

10 14 16

13

11

17

18

19 23

20 22

21

24

25 32

31

30

26 29

27 28

1 2

3

Figure 2. This network consists of three communities at different scales. The first nine nodes selected
by EnRenew are marked red. The network typically shows the rich club phenomenon, that is, nodes
with large degree tend to be connected together.

Table 1. Experiment results on example network shown in Figure 2. The first three nodes selected by
EnRenew are distributed in three communities. The best results of Community Distribution, Average
Distance and F(tc) are marked in bold.

Method
Initial Spreading Nodes Community Distribution

Average Distance F(tc)
1 2 3 4 5 6 7 8 9 1 2 3

Adaptive Degree [58] 8 30 7 18 12 16 13 26 24 5 3 1 3.64 18.22
PageRank [42] 7 8 30 18 12 13 26 29 22 4 3 2 4.33 17.56

h-index [29] 18 12 13 17 9 8 30 16 15 6 1 1 2.75 15.64
k-shell [33] 7 8 30 18 12 13 10 26 17 5 2 1 3.72 17.97

VoteRank [61] 7 30 8 18 12 14 26 22 12 5 2 2 3.94 18.36
Greedy [58] 17 6 27 21 16 32 1 11 23 4 2 2 4.92 21.33

EnRenew (l = 2) 8 30 18 7 16 22 14 28 29 4 3 2 4.27 18.81
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Table 2 shows the experiment results when choosing 9 nodes as the initial spreading set. Greedy
method is usually used as the upper bound, but it is not efficient in large networks due to its high time
complexity. EnRenew and PageRank distribute 4 nodes in community 1, 3 nodes in community 2, and 1
node in community 3. The distribution matches the size of community. However, the nodes selected
by the other algorithms tend to cluster in community 1 except for greedy method. This will induce
spreading within high density area, which is not efficient to spread in the entire network. EnRenew
and PageRank can adaptively allocate reasonable number of nodes based on the size of the community
just as Greedy method. Nodes selected by EnRenew have the second largest average distance except
Greedy, which indicates EnRenew tends to distribute nodes sparsely in the graph. It aptly alleviates
the adverse effect of spreading caused by the rich club phenomenon. Although EnRenew’s average
distance is smaller than PageRank, it has a higher final infected scale F(tc). Test result on PageRank
also indicates that just select nodes widely spread across the network may not induce to a larger
influence range. EnRenew performs the closest to Greedy with a low computational cost. It shows the
proposed algorithm’s effectiveness to maximize influence with limited nodes.

Table 2. Topological features of networks.

Networks n m 〈k〉 kmax 〈c〉
CEnew 453 2025 8.94 237 0.646
Email 1133 5451 9.62 71 0.22

Hamster 2426 16631 13.711 273 0.538
Router 5022 6258 2.492 106 0.012

Condmat 23133 93497 8.083 281 0.633
Amazon 334863 925872 5.530 549 0.397

Note: n and m are the total number of nodes and edges, respectively, and 〈k〉 = 2∗m
n stands for average

node degree and kmax = maxv∈V dv is the max degree in the network and Average clustering coefficient 〈c〉
measures the degree of aggregation in the network. 〈c〉 = 1

n ∑n
i=1

2∗Ii
|Γi |∗(|Γi |−1) , where Ii denotes the number of

edges between direct neighbors of node i.

3.2. Data Description

Table 2 describes six different networks varying from small to large-scale, which are used to
evaluate the performance of the methods. CEnew [89] is a list of edges of the metabolic network
of C.elegans. Email [90] is an Email user communication network. Hamster [91] is a network
reflecting friendship and family links between users of the website http://www.hamsterster.com,
where node and edge demonstrate the web user and relationship between two nodes, respectively.
Router network [92] reflects the Internet topology at the router level. Condmat (Condense Matter
Physics) [93] is a collaboration network of authors of scientific papers from the arXiv. It shows
the author collaboration in papers submitted to Condense Matter Physics. A node in the network
represents an author, and an edge between two nodes shows the two authors have collaboratively
published papers. In the Amazon network [94], each node represents a product, and an edge between
two nodes represents two products were frequently purchased together.

3.3. Analysis of Influence Range When Renewing

We firstly conduct experiments on the parameter l, which is the influence range when renewing
the information entropy. If l = 1, only the direct neighbors’ importance of selected node will be
renewed, and if l = 2, the importance of 2-length reachable nodes will be renewed and so forth.
The results with varying parameter l from 1 to 4 on four networks are shown in Figure 3.

It can be seen from Figure 3 that, when l = 2, the method gets the best performance in four of the
six networks. In network Email, although the results when l = 3 and l = 4 are slightly better comparing
with the case of l = 2, the running time increases sharply. Besides, the three degrees of influence (TDI)
theory [95] also states that a individual’s social influence is only within a relatively small range. Based
on our experiments, we set the influence range parameter l at 2 in the preceding experiments.

http://www.hamsterster.com
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Figure 3. The figure shows how EnRenew’s parameter l influences final affected scale F(tc) on the six
networks. Each subfigure shows experiment results on one network. p is the ratio of initial infected
nodes. The results are obtained by averaging on 100 independent runs with spread rate λ = 1.5 in SIR.
With specific ratio of initial infected nodes p, larger final affected scale F(tc) means more reasonable of
the parameter l. The best parameter l differs from different networks. In real life application, l can be
used as an tuning parameter.

3.4. Comparation with Benchmark Algorithms

Many factors affect the final propagation scale in networks. A good influential nodes mining
algorithm should prove its robustness in networks varying in structure, nodes size, initial infection
set size, infection probability, and recovery probability. To evaluate the performance of EnRenew,
VoteRank , Adaptive Degree, k-shell, PageRank, and h-index algorithms are selected as benchmark
methods for comparing. Furthermore, greedy method is usually taken as upper bound on influence
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maximization problem, but it is not practical on large networks due to its high time computational
complexity. Thus, we added Greedy method as upper bound on the two small networks (CEnew
and Email).

The final affected scale F(tc) of each method on different initial infected sizes are shown in
Figure 4. It can be seen that EnRenew achieves an impressing result on the six networks. In the small
network, such as CEnew and Email, EnRenew has an apparent better result on the other benchmark
methods. Besides, it nearly reaches the upper bound on Email network. In Hamster network, it
achieves a F(tc) of 0.22 only by ratio of 0.03 initial infected nodes, which is a huge improvement than
all the other methods. In Condmat network, the number of affected nodes are nearly 20 times more
than the initial ones. In a large Amazon network, 11 nodes will be affected on average for one selected
initial infected node. But the algorithm performs unsatisfactory on network Router. All the methods
did not yield good results due to the high sparsity structure of the network. In this sparse network,
the information can hardly spread out with small number of initial spreaders. By comparing the 6
methods from the Figure 4, EnRenew surpasses all the other methods on five networks with nearly all
kinds of p varying from small to large. This result reveals that when the size of initial infected nodes
varies, EnRenew also shows its superiority to all the other methods. What is worth noticing is that
EnRenew performs about the same as other methods when p is small, but it has a greater improvement
with the rise of initial infected ratio p. This phenomenon shows the rationality of the importance
renewing process. The renewing process of EnRenew would influence more nodes when p is larger.
The better improvement of EnRenew than other methods shows the renewing process reasonability
redistributes nodes’ importance.

Timestep experiment is made to assess the propagation speed when given a fixed number of
initial infected nodes. The exact results of F(t) varying with time step t are shown in Figure 5. From the
experiment, it can be seen that with same number of initial infected nodes, EnRenew always reaches a
higher peak than the benchmark methods, which indicates a larger final infection rate. In the steady
stage, EnRenew surpasses the best benchmark method by 21.1%, 7.0%, 30.0%, 5.0%, 2.5% and 9.0% in
final affected scale on CEnew, Email, Hamster, Router, Condmat and Amazon networks, respectively.
In view of propagation speed, EnRenew reaches the peak at about 300th time step in CEnew, 200th
time step in Email, 400th time step in Hamster, 50th time step in Router, 400th time step in Condmat
and 150th time step in Amazon. EnRenew always takes less time to influence the same number of
nodes compared with other benchmark methods. From Figure 5, it can also be seen that k-shell also
performs worst from the early stage in all the networks. Nodes with high core value tend to cluster
together, which makes information hard to dissipate. Especially in the Amazon network, after 100
timesteps, all other methods reach a F(t) of 0.0028, which is more than twice as large as k-shell.
In contrast to k-shell, EnRenew spreads the fastest from early stage to the steady stage. It shows that
the proposed method not only achieve a larger final infection scale, but also have a faster infection rate
of propagation.

In real life situations, the infected rate λ varies greatly and has huge influence on the propagation
procedure. Different λ represents virus or information with different spreading ability. The results
on different λ and methods are shown in Figure 6. From the experiments, it can be observed that in
most of cases, EnRenew surpasses all other algorithms with λ varying from 0.5 to 2.0 on all networks.
Besides, experiment results on CEnew and Email show that EnRenew nearly reaches the upper bound.
It shows EnRenew has a stronger generalization ability comparing with other methods. Especially,
the EnRenew shows its impressing superiority in strong spreading experiments when λ is large.

Generally speaking, if the selected nodes are widely spread in the network, they tend to have
an extensive impact influence on information spreading in entire network. LS is used to measure
dispersity of initial infected nodes for algorithms. Figure 7 shows the results of LS of nodes selected
by different algorithms on 6 different networks. It can be seen that, except for the Amazon network,
EnRenew always has the largest LS, indicting the widespread of selected nodes. Especially in CEnew,
EnRenew performs far beyond all the other methods as its LS is nearly as large as the upper bound.
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In regard to the large-scale Amazon network, the network contains lots of small cliques and k-shell
selects the dispersed cliques, which makes k-shell has the largest LS. But other experimental results
of k-shell show a poor performance. This further confirms that EnRenew does not naively distribute
selected nodes widely across the network, but rather based on the potential propagation ability of
each node.
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Figure 4. This experiment compares different methods by final affected scale F(tc) on the six
networks. Each subfigure shows experiment results on one network. p is the ratio of initial infected
nodes. The results are obtained by averaging on 100 independent runs with spread rate λ = 1.5
in Susceptible-Infected-Recovered (SIR). With specific ratio of initial spreading nodes p, larger final
affected scale F(tc) indicates that the selected nodes are more advantageous to spreading. It can be
seen that EnRenew surpasses all the other benchmark methods on the six networks. On the two small
network, EnRenew nearly reaches the upper bound.
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Figure 5. This experiment compares different methods regard to spreading speed. Each subfigure
shows experiment results on one network. The ratio of initial infected nodes is 3% for CEnew, Email,
Hamster and Router, 0.3% for Condmat and 0.03% for Amazon. The results are obtained by averaging
on 100 independent runs with spread rate λ = 1.5 in SIR. With the same spreading time t, larger F(t)
indicates larger influence scale in network, which reveals a faster spreading speed. It can be seen from
the figures that EnRenew spreads apparently faster than other benchmark methods on all networks.
On the small network CEnew and Email, EnRenew’s spreading speed is close to the upper bound.
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Figure 6. This experiment tests algorithms’ effectiveness on different spreading conditions.
Each subfigure shows experiment results on one network. The ratio of initial infected nodes is 3%
for CEnew, Email, Hamster and Router, 0.3% for Condmat, and 0.03% for Amazon. The results are
obtained by averaging on 100 independent runs. Different infected rate λ of SIR can imitate different
spreading conditions. EnRenew gets a larger final affected scale F(tc) on different λ than all the
other benchmark methods, which indicates the proposed algorithm has more generalization ability to
different spreading conditions.



Entropy 2020, 22, 242 14 of 19

0.005 0.010 0.015 0.020 0.025 0.030
p

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

L s

(a)CEnew AdaptiveDegree
VoteRank
PageRank
h-index
k-shell
Greedy
EnRenew

0.005 0.010 0.015 0.020 0.025 0.030
p

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

L s

(b)Email

AdaptiveDegree
VoteRank
PageRank
h-index
k-shell
Greedy
EnRenew

0.005 0.010 0.015 0.020 0.025 0.030
p

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

L s

(c)Hamster AdaptiveDegree
VoteRank
PageRank
h-index
k-shell
EnRenew

0.005 0.010 0.015 0.020 0.025 0.030
p

2

3

4

5

6

L s

(d)Router

AdaptiveDegree
VoteRank
PageRank
h-index
k-shell
EnRenew

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
p

1.0

1.5

2.0

2.5

3.0

L s

(e)Condmat

AdaptiveDegree
VoteRank
PageRank
h-index
k-shell
EnRenew

0.00005 0.00010 0.00015 0.00020 0.00025 0.00030
p

5

6

7

8

9

10

11

12

L s

(e)Amazon AdaptiveDegree
VoteRank
PageRank
h-index
k-shell
EnRenew

Figure 7. This experiment analysis average shortest path length LS of nodes selected by different
algorithms. Each subfigure shows experiment results on one network. p is the ratio of initial infected
nodes. Generally speaking, larger LS indicates the selected nodes are more sparsely distributed in
network. It can be seen that nodes selected by EnRenew have the apparent largest LS on five networks.
It shows EnRenew tends to select nodes sparsely distributed.

4. Conclusions

The influential nodes identification problem has been widely studied by scientists from computer
science through to all disciplines [96–100]. Various algorithms that have been proposed aim to
solve peculiar problems in this field. In this study, we proposed a new method named EnRenew by
introducing entropy into a complex network, and the SIR model was adopted to evaluate the algorithms.
Experimental results on 6 real networks, varying from small to large in size, show that EnRenew is
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superior over state-of-the-art benchmark methods in most of cases. Besides, with its low computational
complexity, the presented algorithm can be applied to large scale networks. The EnRenew proposed
in this paper can also be well applied in rumor controlling, advertise targeting, and many other
related areas. But, for influential nodes identification, there still remain many challenges from different
perspectives. From the perspective of network size, how to mine influential spreaders in large-scale
networks efficiently is a challenging problem. In the area of time-varying networks, most of these
networks are constantly changing, which poses the challenge of identifying influential spreaders
since they could shift with the changing topology. In the way of multilayer networks, it contains
information from different dimensions with interaction between layers and has attracted lots of
research interest [101–103]. To identify influential nodes in multilayer networks, we need to further
consider the method to better combine information from different layers and relations between them.
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