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ABSTRACT
Cross-market recommendation (CMR) involves selling the same set
of items acrossmultiple nations or regionswithin a transfer learning
framework. However, CMR’s distinctive characteristics, including
limited data sharing due to privacy policies, absence of user over-
lap, and a shared item set between markets present challenges for
traditional recommendation methods. Moreover, CMR experiences
market shifts, leading to differences in item popularity and user
preferences among different markets. This study focuses on cross-
market sequential recommendation (CMSR) and proposes theCross-
market Attention Transferring with Sequential Recommendation
(CAT-SR) framework to address these challenges and market shifts.
CAT-SR incorporates a pre-training strategy emphasizing item-
item correlation, selective self-attention transferring for effective
transfer learning, and query and key adapters for market-specific
user preferences. Experimental results on real-world cross-market
datasets demonstrate the superiority of CAT-SR, and ablation stud-
ies validate the benefits of its components across different geo-
graphical continents. CAT-SR offers a robust and adaptable solution
for cross-market sequential recommendation. The code is available
at https://github.com/ChenMetanoia/CATSR-KDD/.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Pre-Training, Sequential Recommendation, Self-Attention, Cross-
Market Recommendation
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1 INTRODUCTION
Recommendation systems typically model historical user-item in-
teractions to learn user and item representations. However, existing
recommendation systems [12, 19, 27] usually assume localization,
where data are stored to a specific country. The global expansion
of companies like Amazon [3], eBay, and Spotify [1] requires ex-
panding sale across different countries/regions, which demands the
cross-market recommendation method.

The unique characteristics in the Cross-Market Recommendation
(CMR) problem weaken existing recommendation methods. These
characteristics include: (1) data between markets cannot be shared
due to privacy constraints imposed by regulations such as the
General Data Protection Regulation (GDPR)1; (2) no overlap of users
between markets; and (3) each market could access all items, even
though some items may not be sold in the current market.

These characteristics render cross-domain recommendationmeth-
ods [9, 30, 34, 35, 40, 41], which involve transitioning between do-
mains inapplicable. This is because they assume data centralization
for joint training or the presence of overlapping users with shared
interaction data. The data privacy restrictions are important and
realistic problem for CMR. For example, Europe restricts the data
sharing across continents, complicating the model training setting
for international companies. The recent data privacy concerns re-
lated to TikTok also raise the issue of model transfer without data
sharing. In CMR, a typical transfer learning protocol involves the
pre-training, then fine-tune framework [2–4, 16, 17, 38].

This paper focuses on the study of Cross-Market Sequential
Recommendations (CMSR). The challenges of CMSR present two
distinct issues, i.e., the shift in item popularity across markets

1General Data Protection Regulation (GDPR) is a legal framework that sets guidelines
for the collection and processing of personal information from individuals who live in
and outside of the European Union. https://gdpr-info.eu/
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Figure 1: Comparison of similarities between eight markets
including United States (us), Germany (de), Japan (jp), In-
dia (in), France (fr), Canada (ca), Mexico (mx) and United
Kingdom (uk). Left heatmap showcases the item popularity
similarity between two markets. Right heatmap illustrates
the user preference similarity across different markets. Most
low similarities show the disparities in item popularity and
user preferences between markets.

and the shift in user preferences across markets. Firstly, the
item popularity market shift across market describes the signif-
icant disparity of item popularity distributions between markets.
The item popularity distribution reflects the global item prefer-
ences and also affects the optimization of item representations
learning [25]. Although all markets share the same set of items,
each market has its specific item popularity pattern due to factors
such as culture and user habits. This is evident in the visualization
of item popularity distributions between all pairs of markets in
Fig. (1, Left), where most similarities are small (≤ 0.4), indicating a
substantial popularity gap between markets. Secondly, the shifting
market preferences of users illustrate that preferences for items
are heterogeneous across markets. We measure the Spearman’s
Rank Correlation of item preference ranks of users to demonstrate
the similarity of user preferences in Fig. (1, Right). The maximum
similarity is small, with a value of 0.51, indicating diverse user
preferences across markets. The directly pre-train then fine-tune
framework [3, 4, 17, 38] becomes sub-optimal in light of these chal-
lenges. To address the market shift problem in knowledge transfer,
a market-aware (MA) model [2] has been proposed, explicitly mod-
eling each market as an embedding. The item representation com-
bines an across-market item embedding with a market embedding.
Similarly, Bert4CMR [16] uses pre-training on parallel markets to
learn item co-occurrences and fine-tuning on the target market to
incorporate specific information.

However, existing solutions [2–4, 16, 17, 38] assume centralized
data availability, which is impractical for CMR due to data sharing
restrictions. While textual item representation learning [6, 14, 15]
can be a solution, it neglects item popularity shifts and user prefer-
ences gaps. The shifted item popularity in the pre-trained source
market limits the ability to generalize to unseen target markets.
Adaptation to target market preferences becomes challenging with-
out simultaneous access to user-item interaction data from both
markets. Moreover, the issue of transferring and fine-tuning spe-
cific model parts in CMSR remains unexplored. Fine-tuning the
entire model from the source market may lead to the problem of

forgetting [10, 15, 29] due to insufficient target market data, caus-
ing overfitting. Directly transferring the entire model to the target
market fails to capture its attributes adequately due to differences
in item popularity and user preferences.

To address the aforementioned challenges in the CMSR, CAT-
SR includes three key components: 1) pre-training module with
a novel item re-weighting function; 2) self-attention transferring;
and 3) market-specific adapters for fine-tuning. In the pre-training
module, we introduce a novel item re-weighting function with two
goals: suppressing popular items and assigning larger weights to
unpopular items. This approach helps mitigate the item popularity
market shift in CMSR. For instance, the popularity of an iPhone
in the US may not necessarily reflect its popularity in India. To
tackle the user preferences market shift, we introduce the selective
self-attention transferring mechanism. By linking the self-attention
and knowledge scoring function, we ilustrate that the self-attention
scores capture item-item correlations optimized based on user pref-
erences. These correlations differ from semantic similarities derived
from meta information. This mechanism efficiently handles the
selection of components to transfer during target market model
fine-tuning, indicating that the subset of network parameters in
the self-attention module provides better generalization ability for
fine-tuning in the target market. For example, regardless of the
market, if a user purchases a mobile phone, there may be a high
probability that they will also buy a mobile phone case or film.
Lastly, we introduce market-specific MLP adapters to augment the
transferred self-attention parameters, enhancing the flexibility to
capture market-specific user preferences.

In summary, our technical contributions include:
1) We highlighting the distinctive characteristics and market shifts

challenges of cross-market recommendations.
2) We propose a novel pre-train then fine-tune framework, CAT-SR,

specifically designed for cross-market sequential recommenda-
tion. This framework introduces a novel pre-training function to
address item popularity market shift and mitigate its impact on
recommendations.

3) We emphasize the significance of transferring only the item self-
attention module for better generalization in target model adapta-
tion, providing valuable insights into effective knowledge transfer
in CMSR.

4) We demonstrate the necessity of market-specific adapters for
fine-tuning in the target market, highlighting their importance
in capturing market-specific user preferences.

2 RELATEDWORK
We conduct a thorough review of existing literature from key re-
search areas, including cross-market recommendation, federated
learning, transferable item representation learning and, sequential
recommendation.

2.1 Cross-market Recommendation
Cross-market recommendation (CMR) has emerged as a novel rec-
ommendation problem with distinct constraints and characteristics
that differentiate it from cross-domain recommendation (CDR).
Both CMR and CDR share the common objective of transferring
knowledge from related domains to target domains to address the
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issue of data sparsity. However, CMR presents unique perspectives
that set it apart from CDR: (1)privacy constraint on user-item
interactions: In CMR, localized market data are collected individu-
ally, and due to privacy concerns, user-item interactions cannot be
shared between markets. (2) shared catalog of items across mar-
kets: Unlike CDR, where the source and target domains may have
different item sets, CMR assumes that all markets share the same
catalog of items. (3) non-overlapping users between markets:
CMR assumes that there are no overlapping users between markets,
meaning users in one market do not exist in other markets. (4)
inability to centralize training data: CMR poses the constraint
of not being able to centralize the training data, which is a standard
assumption in existing CDR methods. This makes CMR a more
challenging problem, and most existing CDR solutions may not be
directly applicable to CMR.

Several methods have been proposed to address the CMR prob-
lem. FOREC [3] and MAML-CF [17] adopt a meta-learning frame-
work, pre-training on multiple markets and fine-tuning on target
markets. M3Rec [4] extends FOREC’s idea by introducing a novel
framework for learning item similarities. However, these models do
not consider the specific characteristics of each market, which is im-
portant since each market exhibits unique traits, as shown in Fig 1.
On the other hand, MA [2], Bert4CMF [16], and SGLCMR [38] pro-
posed market-specific modules to capture market-specific patterns
in general, sequence, and graph recommendations, respectively, al-
lowing the model to be personalized for various markets to fit their
distinctive characteristics. However, all of these models assume
that data from all markets are easily accessible, which may not be
practical in the CMR setting where data sharing is limited due to
privacy concerns or other reasons.

2.2 Federated Learning
Federated Learning (FL) holds promise for cross-market recommen-
dation systems by enabling collaborative training across decentral-
ized edge devices or servers, ensuring data privacy, reducing com-
munication costs, and enhancing scalability, as highlighted in Zhang
et al.’s survey [32]. This method trains models locally on each device
and shares only model updates with a central server, preserving pri-
vacy and supporting flexible and scalable machine learning models.
While FL has not yet been widely applied to cross-market recom-
mendations, its attributes, such as privacy-preserving joint training
and model update aggregation, could be highly beneficial. Tech-
niques from foundational FL works like FedAvg [24], which uses
average loss to update the global model, and advanced models like
FedDCSR [33], which employ domain-shared and domain-exclusive
feature disentanglement, could inform future applications in cross-
market scenarios. However, integrating FL into cross-market recom-
mendations presents challenges, such as capturing the distinct data
distributions of eachmarket andmanaging increased computational
demands across diverse markets. Despite these challenges, the po-
tential for FL to enhance privacy and scalability in cross-market
recommendations is significant.

2.3 Transferable Item Representation Learning
Transferable item representation learning is crucial for recom-
mender systems, enabling dense item vector representations that

facilitate generalization across markets while adapting to unique
market features. In cross-domain scenarios, methods like matrix fac-
torization (MF)[36], DDTCDR [21], and SSCDR [18] transfer item
representations using different techniques, but they may overlook
data privacy or market shifts. Specifically, joint-training used in MF,
DDTCDR, and SSCDR may raise data privacy concerns. Addition-
ally, despite SSCDR’s adaptability to overlapping item scenarios,
it may encounter negative transferring issues due to significant
differences in item popularity between the source and target mar-
kets, as shown in Fig. (4). NATR [9] successfully transfers item
representations without data sharing, but it may suffer from nega-
tive transferring as well. This is because NATR may not effectively
account for market shifts in different item popularity and user pref-
erences between the source and target markets. As a result, the
transferred item representations may not capture the character-
istics of the target market, leading to suboptimal performance in
cross-market recommendation.

On the other hand, recent works [6, 14, 15] focus on leveraging
textual item features for better generalization and feasibility, en-
suring all markets’ item representations exist in the same space.
This approach supports effective transfer learning and generaliza-
tion in cross-market sequential recommendation and addresses the
challenges faced by methods like NATR in negative transferring.

2.4 Sequential recommendation
Sequential recommendation (SR) models the dynamic preferences
of users by considering their historical interactions as a sequence.
A common approach in SR is to use a sequential encoder, which
can be based on either Markov chains or Recurrent Neural Net-
works (RNNs). Markov chain-based methods like FPMC [26] and
Fossil [11] infer the next item based on a few previous interactions
and model first-order transition signals. On the other hand, RNN-
based methods, such as GRU4Rec [13] and HGN [23], recursively
capture sequential inputs, effectively modeling sequential data.

The Transformer architecture, inspired by its successful appli-
cations in various research areas, has gained attention in SR due
to its ability to model high-order item-item transitions and scal-
ability. SASRec [19] was the first work to adopt the Transformer
architecture for SR, while BERT4Rec [27] extended SASRec with
bi-directional attentions. Several variants of the Transformer archi-
tecture have since been proposed to further improve SR [20]. The
Transformer architecture typically includes self-attention modules,
feed-forward neural networks, residual connections, and layer nor-
malization modules. Each component plays a unique role, such as
the self-attention module measuring item-item correlations within
the entire sequence to capture user preferences, which differ from
semantic similarities derived from item meta-features, making it
particularly relevant for cross-market transfer and adaptation.

3 PROBLEM DEFINITION
In this section, we outline the problem setting of our cross-market
sequential recommendation problem. Specifically, we focus on the
one-to-one setting of cross-market recommendation, where we pre-
train a model using abundant data from one market and fine-tune
it using relatively sparse data from another market. We exclusively
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transfer the selective self-attention mechanism to the target mar-
ket addressing data privacy concerns. In this work, we specifically
consider sequential recommendation in the CMR setting, as sequen-
tial methods have been extensively investigated and found to be
scalable across various recommendation tasks [19, 20, 27].

3.1 Cross-Market Recommendation
In cross-market recommendation (CMR), we have multiple markets
M and the associated user set U, item set V , and user-item inter-
actions R, where M𝑖 = {U𝑖 ,V𝑖 ,R𝑖 } for each market M𝑖 . In CMR,
there is no user overlap between markets, i.e.,U𝑖 ∩U 𝑗 = ∅ for any
pair of market M𝑖 and market M 𝑗 . Moreover, markets share the
same set of items, i.e., V𝑖 = V 𝑗 . We focus on the one-to-one learn-
ing setting, with one source market denoted as 𝑆 with abundant
data, and one target market denoted as 𝑇 . We use the superscript
to denote the data of source and target markets, which areM𝑆 =

{U𝑆 ,V𝑆 ,R𝑆 } for the source market and M𝑇 = {U𝑇 ,V𝑇 ,R𝑇 } for
the target market, respectively.

Specifically, we illustrate the workflow of our one-to-one set-
ting in CMR, including the pre-training stage and the fine-tuning
stage. We utilize the source market dataM𝑆 and a well-designed
pre-training loss Lpre to pre-train a recommendation model with
learnable parameters Θ𝑆 as follows:

Θ𝑆 = argmin
Θ𝑆

Lpre (U𝑆 ,V𝑆 ,R𝑆 ). (1)

In the fine-tuning stage, the pre-trained source market model Θ𝑆
is transferred as the initialized point of the target market model
Θ𝑇 = init(Θ𝑆 ). Note that the proper design of the model transfer-
ring process init(·) remains an essential but challenging research
question to be addressed, which is firstly investigated in this work.
The fine-tuning stage is formulated as follows:

argmin
Θ𝑇

L(U𝑇 ,V𝑇 ,R𝑇 , init(Θ𝑇 )),

where init(Θ𝑇 ) = Θ𝑆 . (2)

The challenges in CMR include the investigations on how to transfer
the pre-trained source market model, i.e., the definition of init(·),
and how to develop the pre-training loss Lpre when the source
market 𝑆 and the target market 𝑇 have different user behavior
patterns in between R𝑆 and R𝑇 .

3.2 Sequential Recommendation
Building upon the recent advancements in sequential recommenda-
tion [6, 14, 15] that utilize textual item representations, we leverage
a pre-trained language model (PLM) to encode the meta-textual
information of universal items into vector representations, such as
BERT [5]. These encoded textual embeddings of items are then used
as inputs for sequential recommendation methods, eliminating the
need for learning item embeddings from random initialization, as
in methods like SASRec. One advantage of SR using textual item
representations over traditional SR is that item features are univer-
sal, meaning that the recommendation model transfer in the SR
becomes more feasible as all input item features are in the same
PLM-encoded space.

To be specific, in SR, we have a set of usersU, and a set of items
V with the associated textual meta information X, e.g., description

and title. Each user𝑢 has a set of item interactions with timestamps,
and we sort the interacted items chronologically to form the user
sequence as S𝑢 = [𝑣𝑢1 , 𝑣

𝑢
2 , . . . , 𝑣

𝑢
|S𝑢 | ]. 𝑣

𝑢
𝑖

∈ V denotes the 𝑖-th
interacted item in the user sequence S𝑢 . Each item 𝑣 is encoded
into a vector representation E𝑣 = PLM(X𝑣) and E ∈ R |V |×𝑑 , where
X𝑣 denotes the item’s textual information.

The SR model Θ is optimized by minimizing the next-item pre-
diction loss L as follows:

Θ = argmin
Θ

L (S𝑢 , E) . (3)

Again, different from the definition of SR in [7, 19, 27], the SR in
our model has the fixed item feature representations E as inputs
rather than as learnable parameters in [7, 19, 27].

Definition 3.1. Cross-Market Sequential Recommendation.
There are multiple markets where each market has sequence inter-
actions and items as M𝑖 = {S𝑖 ,V,X}, where S𝑖𝑢 denotes the user
𝑢’s sequence in the market 𝑖 . All markets M𝑖 share the same set
of itemsV , and the item textual representations E = PLM(X) are
shared across markets. In other words, each market has sequence
interactions, items and the associated item textual representations
asM𝑖 = {S𝑖 ,V,E}. The pre-training stage defined in Eq. (1) and
the fine-tuning stage in Eq. (2) still have similar formulations but
with the sequence interactions and items textual representations in-
stead. Moreover, the recommendation model is based on sequential
encoder architectures, such as the building block SASRec.

4 PROPOSED FRAMEWORK
In this section, we present our framework, CAT-SR, for the cross-
market sequential recommendation problem, as illustrated in Fig. (2).
The framework is built upon the Transformer architecture, which
serves as the building block model for the SR problem. We have de-
veloped three key components to address the challenges of market-
based biased item popularity and market-specific user preferences
modeling, including the pre-training with a novel designed re-
weighting function, the self-attention transferable operator for
defining init(Θ𝑇 ) illustrated in Eq. (2), and the last market-specific
adaptation module with simple MLP adapters.

4.1 Transformer as Building Block
As Transformer establishes the building block in our CMSR prob-
lem, we first introduce its ingredients for better illustrations, as
shown in the major component in Fig. (2). As presented in the
problem definition of the SR in Section 3.2, we have the interaction
sequences S𝑢 and the textual item representations E extracted from
the meta information. For each user sequence S𝑢 , the sequence is
first truncated by removing the earliest items if |S𝑢 | > 𝑛 or padded
with 0s to meet the maximum sequence length 𝑛, resulting in a
fixed length sequence 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑛). With a trainable positional
embedding P ∈ R𝑛×𝑑 , we have the sequence embedding matrix as:

ÊS𝑢
= [e𝑠1 + p𝑠1 , e𝑠2 + p𝑠2 , . . . , e𝑠𝑛 + p𝑠𝑛 ], (4)

where e𝑣 denotes the textual item representation of the item 𝑣 .
Specifically, the self-attention module uses scaled dot-products
between items in the sequence to infer their correlations, which



CAT-SR KDD ’24, August 25–29, 2024, Barcelona, Spain

Freeze

Transfer

Freeze

Transfer

Source Market
Pre-train

Multi-Head Attention

Feed-forward Q
ue

ry
 A

da
pt

er

Random
initialized:

Not transfer

Re-weight Pre-trained 

Predict

Fine-tune

Predict

Target Market
Fine-tune

No data shared

K
ey

 A
da

pt
er

ID-agnostic representations = [item title, item description]

PLM Encoder

Multi-Head Attention

Feed-forward

PLM Encoder

Figure 2: The proposed model framework CAT-SR consists of three major components. The first component is the source
market pre-training with item popularity re-weighting to obtain the optimized self-attention for item-item correlations from
the source market. The second step is to transfer the self-attention weights W𝑆

𝑄
and W𝑆

𝐾
to the target market. The third step is

the fine-tuning in the target market. We freezeW𝑇
𝑄
= W𝑆

𝑄
andW𝑇

𝐾
= W𝑆

𝐾
and update parameters via market-specific MLP query

adaptor 𝐴𝑄 and key adaptor 𝐾𝑄 . The textual embedding of each item is generated and fixed by a shared but frozen pre-trained
language model, which provides the consistent representations such that the embeddings of all items in different markets are
represented in the shared latent space.

are as follows:

SA(ÊS𝑢
) = softmax

(
QK⊤
√
𝑑

)
V = softmax

(
ÊS𝑢

W𝑄 (ÊS𝑢
W𝐾 )⊤√

𝑑

)
V,

(5)
where Q = ÊS𝑢

W𝑄 , K = ÊS𝑢
W𝐾 , and V = ÊS𝑢

W𝑉 . As both Q and
K are transformations to the same sequence items, the self-attention
module SA measures learn the latent correlation between items,
which are optimized based on user preferences. The point-wise feed-
forward network (FFN) is further applied after the self-attention
module as follows:

H𝑢 = FFN
(
SA(ÊS𝑢

)
)
= ReLU

(
SA(ÊS𝑢

)W1 + b1
)
W2 + b2, (6)

where H𝑢 denotes the sequence output representations. We omit
the residual connection and layer normalization components for
simplicity, and details can be found in [19, 28]. These components
can be stacked multiple times, as shown in Fig. (2).

4.2 Source Market Pre-training
With the source market sequences and textual item representations
M𝑆 = {S𝑆 ,E}, the pre-training on the source market is the first
step in our proposed framework CAT-SR, as shown in the upper
left component of Fig. (2). In the pre-training stage, we propose a

re-weighted pre-training lossLpre to mitigate the market shift from
the item popularity in the source market for better generalization
ability of the pre-trained model. The item popularity re-weighting
pre-training is crucial as there is a significant gap in the item popu-
larity distributions between the source and target market, which is
shown in Fig. (1, Left). To properly design the pre-training loss, we
need to achieve two goals simultaneously: (1) mitigating the impact
of popular items and (2) assigning greater significance to less popu-
lar items compared to their popular counterparts. We achieve this
by employing the proposed re-weighting function 𝑤𝐹 (𝑣) , which
adjusts the weight allocation in the positive and negative loss calcu-
lation based on the popularity 𝐹 (𝑣) of the item 𝑣 . We proposed our
re-weighting pre-training loss Lpre, which is defined as follows:

Lpre = −
∑︁

S𝑢 ∈S𝑆

|S𝑢 |∑︁
𝑡=1

(
𝑤𝐹 ( 𝑗+ )Lpos +𝑤𝐹 ( 𝑗− )Lneg

)
, (7)

Lpos = log
(
𝜎

(
H⊤
(𝑢,𝑡 )E𝑗+

))
,Lneg = log

(
1 − 𝜎

(
H⊤
(𝑢,𝑡 )E𝑗−

))
,

where S𝑆 denotes the source market’s sequences, H(𝑢,𝑡 ) denotes
the output at the time step 𝑡 of the user sequence S𝑢 , E𝑗+ and E𝑗−
denote embeddings of the positively interacted item 𝑗+ with the
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user 𝑢 and the negatively sampled item 𝑗− , and 𝜎 (·) is the sigmoid
function. Lpre aims to make the model’s output more similar to
the embedding of positive items, while also making it less similar
to the embedding of negative items. This is done while taking
into account how popular the current item is. The weight 𝑤𝐹 (𝑣)
boosts the significance of less popular items while diminishing the
relevance of other items throughout the backpropagation phase.

Baseline with Equal Weights. The baseline case suffers from
the item popularity bias because popular items appear more in
sequence interactions, where Lpre sums up all sequence interac-
tions. In other words, popular items have more opportunities being
optimized in the baseline case. Given the significant difference of
item popularity between source and target markets, as shown in
Fig. (4), the pre-trained model operating under an equal weight
baseline demonstrates sub-optimal performance.

The pre-training loss degrades to the regular cross-entropy loss
adopted by existing methods [19, 20], when we enforce the𝑤𝐹 (𝑣) =
1. The proposed𝑤𝐹 (𝑣) is formulated as follows:

𝑤𝐹 (𝑣) = 𝛼 − tanh(𝛽𝐹 (𝑣) − 𝛽), (8)

where tanh(·) denotes the hyperbolic tangent activation function
mapping the positive input value to [0, 1], 𝛼 represents the upper
bound of the item weight and 𝛽 denotes the popularity shift. Larger
values of 𝛼 signify a stronger emphasis on mitigating the impact of
popularity bias. This emphasis is manifested in the amplification of
attention weights for items with lower popularity scores, promoting
a more balanced representation of recommendations. Conversely,
smaller values of 𝛼 may result in a more conservative approach,
where the amplification effect is less pronounced. The parameter
𝛽 plays a crucial role in shaping the transformation’s behavior. A
higher value of 𝛽 introduces a steeper slope to the tanh, leading to
a sharper transition in weight adjustments. This can be interpreted
as a mechanism to impose a stronger penalty on items with higher
popularity scores.

Analysis of 𝑤𝐹 (𝑣) . We visualize the curves of the item popu-
larity re-weighting solution𝑤𝐹 (𝑣) for items in Fig. (4). In Fig. (4),
we also include the baseline𝑤𝐹 (𝑣) = 1, which always assigns equal
weight value of one to items, regardless of the item popularity.
The proposed𝑤𝐹 (𝑣) suppresses the item weight for popular items
with abundant interactions in Fig. (4). With different 𝛼 and 𝛽 , the
curves of𝑤𝐹 (𝑣) are monotonically decreasing, with the intention
that larger popularity has a smaller weight. This design addresses
the item popularity shift in the source market, with the goal of
obtaining a more balanced pre-trained model.

4.3 Selective Transferable Self-Attention
Transferring partial modules can help adapt the model to the target
domain more effectively, which will be demonstrated in the ex-
perimental analysis Section 5.4. With the pre-trained Transformer
using the data in the source market, we need to selectively transfer
semantically beneficial information from the source market to the
target market. As shown in the middle part of Fig. (2), we only trans-
fer the weights of the self-attention module on items. We argue
that the self-attention module captures items’ semantic similarities,
which are expected to be beneficial for the target market. We also
argue that transferring only partial modules that capture generic
features or representations is preferred over transferring the whole

model, as the latter may transfer irrelevant or conflicting knowl-
edge from the source domain, especially when the source and target
markets have significant differences. As all markets share the same
set of items, the item similarities are crucial in the cross-market
recommendation [4]. As demonstrated in [8], the self-attention com-
ponent encodes the item-item correlations. For a specific item pair
(𝑣𝑖 , 𝑣 𝑗 ) in the sequence, we expand the self-attention calculation in
Eq. (5) as follows:

Att(𝑣𝑖 , 𝑣 𝑗 ) = Q𝑣𝑖K
⊤
𝑣𝑗

= Ê𝑣𝑖W𝑄W⊤
𝐾 Ê

⊤
𝑣𝑗

= Ê𝑣𝑖W𝑄𝐾 Ê⊤𝑣𝑗 ,

where E𝑣𝑖 and E𝑣𝑗 denote the item embeddings of item 𝑣𝑖 and 𝑣 𝑗
in S𝑢 respectively,W𝑄 ∈ R𝑑×𝑑 ,W𝐾 ∈ R𝑑×𝑑 are weight matrices
in self-attention, andW𝑄𝐾 = W𝑄W⊤

𝐾
. With the similar forms of

the self-attention scores and knowledge embedding scorings from
knowledge graph methods, e.g., DistMult [31] and ANALOGY [22],
the self-attention scaled dot-product can be interpreted as a scoring
function for measuring the item-item correlation with the W𝑄𝐾 as
the latent space mapping [8]. Moreover, the attention scores are
optimized based on the user preferences in sequences, which is
significantly different from the item similarities from only the item
meta textual information, i.e., EE⊤.

Instead of transferring the whole pre-trained Transformer, we
transfer theW𝑄𝐾 = W𝑄W⊤

𝐾
, which encodes the item-item corre-

lations and is referred to as the selective self-attention transfer-
ring. Specifically, in the init(Θ𝑇 ) = Θ𝑆 , Θ𝑆 includes the learnable
parameters in the self-attention module, point-wise feed-forward
networks, and the layer normalization module. We only transfer
the subset of Θ𝑆 , i.e.,

init(W𝑇
𝑄 ) = W𝑆

𝑄 , init(W
𝑇
𝐾 ) = W𝑆

𝐾 , (9)

where {W𝑆
𝑄
,W𝑆

𝐾
} denotes the W𝑄 and W𝐾 pre-trained in the

source market.

4.4 Market-Specific Fine-Tuning
The self-attention transferring init(Θ𝑇 ) = {W𝑆

𝑄
,W𝑆

𝐾
} shares the

item-item correlations learned from the source market, and acts as
the initialization point for the item-item correlations in the target
market. However, the item re-weighting pre-training loss and the
selective self-attention transferring encode the domain-invariant
item correlations, which is insufficient for the target market mod-
eling due to the user preferences and item popularity distribution
shifts. We propose to augment transformations on the selective
transferred self-attention weights to provide better flexibility in
the target market, thus adopting the domain-specific knowledge
presented in the right part of Fig. (2). Specifically, while the target
market are initialized with W𝑇

𝑄
= W𝑆

𝑄
and W𝑇

𝐾
= W𝑆

𝐾
, we apply

the MLP adapters 𝐴𝑄 and 𝐴𝐾 to the pre-trained query and key
matrices in the target domainW𝑇

𝑄
andW𝑇

𝐾
, respectively:

𝑊
𝑇
𝑄 = 𝐴𝑄 (W𝑆

𝑄 ) = W𝐴𝑄W𝑆
𝑄 , 𝑊

𝑇
𝐾 = 𝐴𝐾 (W𝑆

𝐾 ) = W𝐴𝐾W𝑆
𝐾 . (10)

The adapters are jointly fine-tune with the target domain’s data as:

L = −
∑︁

S𝑢 ∈S𝑇

|S𝑢 |∑︁
𝑡=1

[
log

(
𝜎

(
H⊤
(𝑢,𝑡 )E𝑗+

))
+ log

(
1 − 𝜎

(
H⊤
(𝑢,𝑡 )E𝑗−

))]
,

(11)
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Table 1: Datasets Statistics

de jp in fr ca mx uk us
# users 2,373 487 239 2,396 5,675 1,878 4,847 35,916
# items 2,210 955 470 1,911 5,772 1,645 3,392 31,125
# inter 22,247 4,485 2,015 22,905 55,045 17,095 44,515 364,339

where S𝑇 denotes the target market’s sequences, and H denotes
the sequence output embeddings from the fine-tuned target model
with transferred {W𝑆

𝑄
,W𝑆

𝐾
}.

5 EXPERIMENTS
We extensively evaluate the effectiveness of our proposed frame-
work CAT-SR on a large-scale cross-market dataset. Additionally,
we perform ablation studies to demonstrate the superiority of our
design. Our evaluation addresses the following research questions:
RQ1: Does CAT-SR achieve better cross-market recommendations
than state-of-the-art baselines? RQ2: Does the item popularity
re-weighting module benefit? RQ3: Is the choice of self-attention
transferring better than other components? RQ4: Is using MLP
adapters in the fine-tuning stage necessary?

5.1 Experimental Setup
In this section, we provide an overview of the datasets, evaluation
protocol, baselines, and implementation details.

5.1.1 Dataset. We evaluate our proposed model using the publicly
available real-world cross-market dataset called XMarket2, obtained
from Amazon. This dataset is designed to facilitate cross-market
item recommendation and market adaptation and includes ratings,
reviews, and various metadata such as item title, average rating, and
item details. The dataset comprises seven electronic markets across
three continents, as shown in Table1, which is consistent with CMR
model FOREC [3] and MA [2]. To create item text features, we
concatenate the title and description textual information for each
item, which serves as the meta information in the dataset.

5.1.2 Evaluation Protocol. To evaluate our cross-market recom-
mendation tasks, we employ the widely recognized leave-one-out
(LOO) evaluation approach. This approach uses the most recent
user interaction as the test item, while the second-to-last interaction
serves as the validation item. To assess the model’s effectiveness,
we measure its ability to rank the test item against a set of negative
items that the user hasn’t interacted with. In line with the practices
of other CMR models [2, 3, 16, 17], we sample 99 negative items for
each user during evaluations to ensure equitable comparisons. As
our focus is on top-N item recommendation, we rely on normalized
discounted cumulative gain (nDCG@10) and Hit-Rate (HR@10) as
the established evaluation metrics.

5.1.3 Baselines. In our extensive evaluation of CAT-SR’s recom-
mendation performance, we conduct a thorough comparison with
various models across each target market. SASRec and S3-Rec
belong to the single-domain models, leveraging directional self-
attention for capturing item correlations within sequences. Con-
versely, DCDCSR, SSCDR, and NATR fall under the category of

2https://xmrec.github.io/

CDR models, with a strong focus on learning transferable user
and item representations. These models are adapted for CMR by
establishing connections between the item features of two mar-
kets. Additionally, we incorporate other CMR models like MAML,
FOREC, and MA into our assessment. MAML serves as a widely
employed meta-learning model in the recommendation domain.
FOREC, on the other hand, is a CMR model that employs a meta-
learning approach to transfer knowledge from source to target
markets by freezing and modifying specific layers in their archi-
tectures. MA utilizes market embeddings to adjust items for the
current market and leverages data from multiple auxiliary markets
for training a comprehensive recommendation system, achieving
optimal performance across various settings. Notably, DCDCSR,
SSCDR, MAML, FOREC, and MA possess supplementary informa-
tion, granting them simultaneous access to both source and target
domains, which must be considered while interpreting the eval-
uation results. Moreover, we further consider federated learning
models like FedAvg and FedDCSR for evaluation. FedAvg uses aver-
age loss to update the global model, while the cutting-edge model
FedDCSR employs a domain-shared and domain-exclusive feature
disentanglement strategy for training. To fairly assess the influence
of Pre-trained Language Models (PLMs) on performance, we use
BERT to generate item embeddings based on UnisRec [15]. These
embeddings are then applied to SASRec, UnisRec, and CAT-SR for
comprehensive analysis.

5.1.4 Hyper-parameters and Grid Search. To ensure the fairness
and reliability of our experiments, we implemented our proposed
framework on top of RecBole [37]. For SASRec and S3Rec, we con-
ducted an extensive hyper-parameter search, exploring different
values for the learning rate (0.01, 0.001, 0.0001), embedding dimen-
sion (64, 128, 384), number of layers (1, 2, 4), and number of heads
(1, 2, 4). The batch size was set to 256. For DCDCSR, NATR, and
SSCDR, we used the default settings provided by RecBole, with the
item overlapping mode enabled. Regarding MAML, FOREC, and
MA, we replicated the results using MA’s publicly available code 3.

5.2 Overall Performance (RQ1)
We evaluate the proposed model against baselines on seven differ-
ent markets, with the largest data set, the United States (us) market,
used as the source domain for model pre-training. We obtain the fol-
lowing observations: 1) Text-enhanced sequential recommendation
methods (SASRecBERT and UnisRecBERT) exhibit superior perfor-
mance compared to traditional methods. This is attributed to their
utilization of item texts as auxiliary features, contributing to perfor-
mance enhancement. 2) Cross-market models (MAML, FOREC, MA)
surpass cross-domain models (DCDCSR, SSCDR, NATR) as well as
single-domain models (SASRec, S3-Rec). The superior performance
of cross-market models is attributed to their capability to address
market shifts, unlike cross-domain models. Furthermore, single-
domain models lack auxiliary information crucial for enhancing
performance in the target market context. 3) cross-domain models
do not surpass single-domain models in performance. This could
be attributed to the direct transfer of item knowledge by cross-
domain models, which may inadvertently lead to negative effects

3https://github.com/samarthbhargav/efficient-xmrec

https://xmrec.github.io/
https://github.com/samarthbhargav/efficient-xmrec


KDD ’24, August 25–29, 2024, Barcelona, Spain Chen Wang et al.

Table 2: Overall Performance Comparison Table. The best and second-best results are bold and underlined, respectively.
“Improv.” indicates the relative improvement ratios of the proposed approach over the best performance baselines. “*” denotes
that the improvements are significant at the level of 0.05 with paired 𝑡-test. BERT means using BERT to generate item embedding.

nDCG@10 HR@10
de jp in fr ca mx uk de jp in fr ca mx uk

SASRec [19] 0.2010 0.1810 0.2234 0.1976 0.1373 0.3105 0.2529 0.3266 0.2875 0.4644 0.3322 0.2153 0.5048 0.4269
S3-Rec [39] 0.1943 0.2094 0.2397 0.2573 0.1544 0.3321 0.2748 0.3012 0.3123 0.4817 0.3936 0.2465 0.5331 0.4532

DCDCSR [21] 0.1452 0.1561 0.1665 0.2154 0.1498 0.2734 0.2099 0.2736 0.2687 0.4200 0.3484 0.2399 0.4645 0.3612
SSCDR [18] 0.1348 0.1489 0.1074 0.1831 0.0954 0.1149 0.1465 0.2643 0.2123 0.2986 0.2446 0.1567 0.2646 0.2357
NATR [9] 0.1855 0.1737 0.1788 0.2610 0.1988 0.3331 0.2289 0.3011 0.2718 0.3567 0.4185 0.2884 0.5198 0.3984
MAML [17] 0.3048 0.1915 0.4295 0.3216 0.2938 0.5592 0.4508 0.4437 0.3162 0.5146 0.4641 0.4449 0.6560 0.5729
FOREC [3] 0.3264 0.2095 0.4383 0.3228 0.2942 0.5664 0.4654 0.4707 0.3367 0.5188 0.4661 0.4525 0.6570 0.5871
MA [2] 0.3419 0.2131 0.4678 0.3283 0.3220 0.5547 0.4563 0.4884 0.3593 0.5439 0.4737 0.4800 0.6363 0.5685

FedAvg [24] 0.2137 0.1748 0.2087 0.1950 0.1169 0.2628 0.2517 0.3287 0.2916 0.4059 0.3022 0.2090 0.4819 0.4205
FedDCSR [33] 0.4925 0.5018 0.3697 0.4244 0.3291 0.4135 0.5108 0.5974 0.5791 0.4235 0.5126 0.4157 0.4987 0.5673

SASRecBERT 0.5464 0.4886 0.3787 0.4837 0.2808 0.3004 0.4422 0.6242 0.5863 0.4575 0.5639 0.3276 0.3919 0.5043
UnisRecBERT 0.6342 0.6092 0.4767 0.6039 0.3883 0.2879 0.5228 0.6492 0.6241 0.5526 0.6538 0.4599 0.5628 0.6083
CAT-SRBERT 0.6957* 0.6620* 0.6145* 0.6442* 0.4681* 0.5338 0.6044* 0.7605* 0.7444* 0.7348* 0.7301* 0.5754 0.6463 0.6869*

Improv. +9.70% +8.67% +28.91% +6.67% +20.55% - +15.61% +17.14% +19.28% +32.91% +16.70% 19.86% - +12.92%

Figure 3: Performance comparison between re-weighted v.s.
w/o weight on different continents.

in target markets. 4) FedDCSR significantly outperforms FedAvg,
showcasing its ability to effectively separate user sequence features
into domain-shared and domain-exclusive components, thus en-
hancing performance. However, CAT-SR consistently exceeds the
performance of both federated learning models across all evaluation
metrics in the seven markets. This underscores a critical distinc-
tion between cross-domain and cross-market recommendations:
the importance of accurately capturing market-specific biases in
cross-market scenarios. 5) CAT-SR outperforms all baselines except
Mexico (mx), since CAT-SR eliminates the impact of the source
market shifts on recommendations while acquiring abundant item
self-attention knowledge from the source market. The transfer com-
ponent of the model provides flexibility for downstream tasks when
transferring item self-attention to the target market, preventing
the dominance of source market-learned parameters. Furthermore,
the adapter for query and key matrices is better aligned with the
target market while preserving the item’s relevance. The reason
why CAT-SR’s performance on Mexico is slightly worse than the
best baseline, is because we cannot joint-train source and target
markets so it is difficult to capture the target market distribution.
While re-weighting the pre-training loss can alleviate the effects
of market-shift, achieving a precise match of the target market
distribution is still challenging without shared data.

Figure 4: Left: Visualization 𝑤𝐹 (𝑣) for varying parameters
𝛼 and 𝛽, 𝐹 (𝑣) denotes the item 𝑣 ’s. Right:Performance dif-
ferences with different 𝛼 and 𝛽 values in the re-weighting
function for different continents.

5.3 Item Popularity Reweighting Effects (RQ2)
We conducted a comparison of our model’s performance in differ-
ent markets, with and without the inclusion of the item popular-
ity re-weighting module in the pre-training loss objective. Fig. (3)
demonstrate that the adoption of the item popularity re-weighting
module significantly improves recommendation performance in
all markets. Interestingly, transferring the re-weighted module to
the India (in) market resulted in the highest improvement, even
in light of the pronounced cultural differences between the United
States (us) and India (in) markets. This observation underscores
the model’s efficacy in mitigating the impact of divergent popular-
ity biases between these markets, effectively readjusting the item
popularity bias. The negative impact of transferring from the us
market to the Mexico (mx) market could be attributed to the unique
characteristics of the mx market, which may not be well-captured
by the self-attention learned from the us market. This misalignment
with the preferences and behaviors of users in the mx market may
have resulted in suboptimal recommendations.

We also conducted an analysis of the patterns of the popular-
ity re-weighting function. As shown in Fig. (4), we illustrated the
performance differences with various values of 𝛼 and 𝛽 , which
are hyper-parameters of the item popularity re-weighting function
in Eq. (8). Comparing four countries, we observed that Canada



CAT-SR KDD ’24, August 25–29, 2024, Barcelona, Spain

Figure 5: Performance comparison between different module
transfer methods on different continents, including CAT-SR
(query and key) only, transferring the whole model, the feed
forward layer (FFN), (value) only, (query, key, and value)

Figure 6: Performance comparison of adopting the adapters
on different continents.

ca market achieved the best results when 𝛼 = 1.2 and 𝛽 = 0.5,
while in European markets Germany (de) and France (fr) required
larger values of 𝛼 = 1.2 and 𝛽 = 1.5. As demonstrated in Fig. (4), 𝛼
represents the upper bound of the weight, and 𝛽 determines the
popularity shift weight. Considering that India (in) is relatively
smaller markets compared to more popular markets, they may expe-
rience larger market shifts. Hence, a larger re-weighting on the item
popularity is needed for these two markets to effectively address
the popularity bias in recommendations.

5.4 Study of Transferable Components (RQ3)
Transferring query and key components is the most effec-
tive. We conduct five experiments in which we transferred the
whole model, the feed-forward layer (FFN), or the multi-head atten-
tion module, including transferring (query, key, and value), (value)
only, or (query and key) only. The experimental results show that
transferring a partial model is more effective than transferring the
whole model, as shown in Fig. (5). This is because transferring the
entire model may cause overfitting to the source domain and nega-
tively impact the performance on the target domain. Transferring
the query and key components is the most effective approach, as
the query and key components are responsible for computing the
attention weights between the input sequence and the learned rep-
resentations. On the other hand, the value component generates the
output sequence and is less domain-specific. By transferring only
the query and key components, we can leverage the knowledge
learned from the source domain about computing the attention
weights, particularly when the target domain has similar patterns
in the input sequence as the source domain.

5.5 Market-Specific Adapters (RQ4)
We conduct an experiment to determine the usefulness of adapters
during the fine-tuning stage to map the pre-trained query and key
matrices to the target market, as shown in Fig. (6). Our experimental
results show that adapters benefit the model. By adding an adapter
such as MLP during the fine-tuning stage, the model can leverage
the knowledge it gains from the source domain while adapting
to the specific characteristics of the target domain. This approach
effectively prevents the model from overfitting to the target domain
by fixing the query and value matrices, which are responsible for
generating the output sequence and may require more domain-
specific knowledge. The adapter allows the model to learn new
representations specific to the target domain, thereby improving
performance on the target task. Overall, this approach achieves a
balance between leveraging the knowledge learned from the source
domain and adapting to the characteristics of the target domain,
resulting in improved performance.

6 CONCLUSION
We investigate and address the challenges of cross-market sequen-
tial recommendation with our novel framework CAT-SR. It com-
prises three components: a novel item popularity re-weighting
function for pre-training, self-attention transferring to improve
generalization, and market-specific MLP adapters for user pref-
erences adaptation. Experiments on a large dataset confirm the
effectiveness of CAT-SR, and ablation studies highlight the impor-
tance of each component.
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