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Abstract: Phages are widely distributed in locations populated by bacterial hosts. Phage proteins can be 

divided into two main categories, that is, virion and non-virion proteins with different functions. In 

practice, people mainly use phage virion proteins to clarify the lysis mechanism of bacterial cells and 

develop new antibacterial drugs. Accurate identification of phage virion proteins is therefore essential to 

understanding the phage lysis mechanism. Although some computational methods have been focused on 

identifying virion proteins, the result is not satisfying which gives more room for improvement. In this 

study, a new sequence-based method was proposed to identify phage virion proteins using g-gap 

tripeptide composition. In this approach, the protein features were firstly extracted from the g-gap 

tripeptide composition. Subsequently, we obtained an optimal feature subset by performing incremental 

feature selection (IFS) with information gain. Finally, support victor machine (SVM) was used as the 

classifier to discriminate virion proteins from non-virion proteins. In 10-fold cross validation test, our 

proposed method achieved an accuracy of 97.40% with AUC of 0.9958, which outperforms state-of-the-

art methods. The result reveals that our proposed method could be a promising method in the work of 

phage virion proteins identification. 
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1. INTRODUCTION 

The bacteriophage, also known as phage, is a kind of virus 

that infects and replicates within bacteria and archaea. They 

are among the most common and diverse entities in the 

biosphere. Bacteriophages are composed of proteins that 

encapsulate a DNA or RNA genome and may have relatively 

simple or elaborate structures. Sometimes a layer of lipid film 

is wrapped around the protein shell when it is outside the cell. 

The proteins coded by phage genes are regarded as a possible 

therapy against multi-drug-resistant strains of many bacteria 

for which it is important to get a further understanding of the 

phage proteins. 

Phage proteins can be divided into virion proteins and non-

virion proteins. The virion protein produced by phage gene 

compilation is an important part of the assembled phage 

particle, including capsid protein, envelope protein and virus 

granzyme [1]. These virion proteins determine the specificity 

of the host bacteria and play an important role in phage virus 

recombination, receptor recognition, bacterial attachment and 

infiltration [2]. Phage non-virion proteins, also compiled from 

the phage genome and synthesized in infected cells, are not 

* Correspondence: Tel: +8613550202554 E-mails: huigao@uestc.edu.cn 

been packaged in mature bacteriophage particles [1]. These 

non-viral proteins, mainly enzymes and regulatory proteins, 

play an important role in the biological processes of phage 

gene replication, transcription and expression [3]. The 

function of virion proteins is quite different from non-virion 

proteins while in practice, virion proteins are considered. 

Having a knowledge of phage virion proteins is important for 

understanding the mechanism of interaction between phage 

and its host bacteria as well as the development of new 

antibacterial drugs. For example, phage can be used in the 

identification of bacteria for the high specificity of phages and 

that it can rapidly multiply and produce phage proteins after 

injected. So the existence of the corresponding bacteria can be 

proved if the number of phages detected in experiment 

increases sharply. Phage can also be used in the treatment of 

diseases. They have the function of lysing corresponding 

bacteria, which can be used to deal with the drug-resistant 

bacteria and it is safer and more effective than antibiotics. The 

treatment tests using phage have already begun. Pherecydes 

Pharma from France is now testing the anti-infective effect of 

different combinations of bacteriophage in burn wards of 

hospitals in Western Europe with the support of the European 

Union. In previous animal experiments, phage therapy has 

shown significant anti-E.coli (Escherichia coli) and 
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Pseudomonas aeruginosa infections with considerable 

reliability. 

Identification of phage virion proteins becomes important 
for the value behind it. Machine learning approaches have 
been proven as powerful and efficient tool in dealing with 
various biological problems. Actually, Seguritan et al. have 
proposed an Artificial Neural Network (ANN)-based method 
to classify viral structural proteins by using amino acid 
composition and protein isoelectric points [4]. A Naïve 
Bayes-based method was proposed to predict phage virion 
proteins using amino acid composition and dipeptide 
composition by Feng et al. [5]. A sequence-based method was 
developed to identify phage virion proteins by the ANOVA 
(Analysis of variance) feature selection and analysis by Ding 
et al. [6]. Although the aforementioned methods could yield 
encouraging results, the accuracies of these methods still need 
improvements. 

This study is devoted to improve the prediction quality of 
phage virion protein prediction. Firstly, we propose a new 
feature constructing method based on g-gap tripeptide 
composition that extracts features from the protein sequences. 
Subsequently, the information gain is used as the feature 
ranking criterion to judge the importance of each feature on 
the classification results. We then use an incremental feature 
selection (IFS) method after sorting the features in descending 
order based on the information gain to find the optimal feature 
subset. Finally, the support vector machine (SVM) is used as 
the classifier to identify phage virion proteins. A 10-fold cross 
validation test was used to evaluate the method, results of 
which revealed that our proposed method could be a high 
accuracy prediction tool to identify phage virion proteins. 
Furthermore, for the convenience of other related works, an 
online web-sever was established and can be freely accessed 
from the website (http://bigroup.uestc.edu.cn/virionpred/). 

To develop a really useful sequence-based predictor for a 
biological system as reported in a series of recent publications 
[7]–[21] , we adopted Chou’s 5-step rule [22], which states as 
follows: (i) construct or select a valid benchmark dataset to 
train and test the predictor; (ii) formulate the biological 
sequence samples with an effective mathematical expression 
that can truly reflect their intrinsic correlation with the target 
to be predicted; (iii) introduce or develop a powerful 
algorithm (or engine) to operate the prediction; (iv) properly 
perform cross-validation tests to objectively evaluate the 
anticipated accuracy of the predictor; (v) establish a user-
friendly web-server for the predictor that is accessible to the 
public. The aforementioned rules were addressed in detail in 
the material and methods section. 

2. RESULTS AND DISCUSSION 

2.1 Feature selection for improving accuracy  

According to the g-gap tripeptide composition mentioned 

in the 3.2 section, a total of 8000-dimensional features was 

constructed while the training sample number is only 307, 

which will lead to the curse of dimensionality. For example, 

the final model accuracy of the 8000-dimensional 2-1-gap 

tripeptide composition features valued by 10-fold cross 

validation is only 69.74%. Although the low-dimensional 

features can make the model more robust, an inadequate 

feature will make the information provided by the features 

insufficient and the model can only obtain a low accuracy. 

When we only take the first 10 features of the 2-1-gap 

tripeptide feature set, the accuracy of the model after 10-fold 

cross validation records only 72.96%. Hence, some evaluation 

methods were used to select the optimal feature subset from 

the feature set to reduce the dimension of the feature. 

Obviously, we can get the optimal feature subset by testing all 

possible combinations of features, which is impossible to test 

one by one. Take the 20-dimensional features of a single 

amino acid as an example. The possible combinations of these 

20-dimensional features are 𝐶20
1 + 𝐶20

2 + 𝐶20
3 +⋯𝐶20

19 +
𝐶20
20 = 1048575. Obviously, for an 8000-dimension feature 

set, the combination is much larger. To save computing time 

and resources, information gain was used as the criterion to 

measure the importance of the feature and then the 

incremental feature learning (IFS) method was used to 

construct the optimal feature set. The final performance of 

model was evaluated by accuracy (Acc), sensitivity (𝑆𝑛 ), 

specificity (𝑆𝑝) and Mathew’s correlation coefficient (MCC). 

Using the feature selection approach mentioned above, an 

SVM based classifier was built to classify the phage protein 

dataset and valued by 10-fold cross validation. There are 100 

results for the two gaps are all vary from 0 to 9. The best result 

of each former gap is selected and shown in the Figure 1. The 

accuracy rate and other indicators on their respective feature 

subsets are compared. Specific results are shown in table 1. 

Figure 1: The IFS procedure of each former gap 

Table 1: The best result of each former gap 

g-gap TC Num. of features Sn(%) Sp(%) Acc(%) MCC 

0-5-gap 601 86.86 98.55 94.79 0.8801 

1-5-gap 751 89.89 99.51 96.41 0.9181 

2-1-gap 771 91.91 100 97.40 0.9408 

3-3-gap 791 89.89 98.55 95.75 0.9025 

4-4-gap 781 89.89 100 96.75 0.9261 

5-8-gap 721 90.90 98.55 96.10 0.9100 

6-0-gap 771 89.89 100 96.73 0.9261 

7-8-gap 541 87.87 100 96.08 0.9115 

8-3-gap 791 89.89 99.51 96.41 0.9181 

9-5-gap 781 89.89 99.51 96.43 0.9641 
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From Table 1, it can be seen that the classification results 

using the g-gap tripeptide is impressive, with a classification 

accuracy of up to 97.40% and some classification accuracy of 

negative samples up to 100%. The model built on the features 

consist of the top 771 highest information gain of the 2-1-gap 

tripeptide composition achieves the best accuracy of 97.40% 

with a positive recall rate of 91.91% and negative recall rate 

of 100%. From figure 1, we may notice that the accuracy is 

high when the number of features are more than 200 no matter 

what the gap value is, which indicates that the quality of 

features built by g-gap tripeptide composition is stable. 

2.2 Comparison with other methods  

 

In the study of phage proteins, Feng et al used 20 types of 
amino acids and 400-dimensional dipeptide to form 420-
dimensional eigenvectors, which were classified by Naïve 
Bayes and achieved an accuracy of 79.15% [5]. Ding et al 
constructed 400-dimensional features using the g-gap 
dipeptide composition leading to an accuracy of 85.02% [6]. 
Zhang et al used random forest on four groups of 
characteristics constructed respectively from the composition, 
transformation distribution and pseudo-amino acid 
composition, which achieved an accuracy of 85% after the 
models were ensembled [13]. The results of this study were 
compared with Ding’s method (method 1) since it is the most 
similar one to ours. For more comparison, we built another 
two methods based on the same process except for the method 
of feature extraction and feature ranking. Namely, method 2 
(g-gap DC & information gain) is different in feature 
extraction and method 3 (g-gap TC & ANOVA) is different in 
feature ranking criterion. The detailed results are shown in 
table 2.  

It can be seen from the table that the method proposed in 

this study based on g-gap tripeptide composition and 

information gain achieves the best accuracy of 97.40% with 

the best specificity and MCC. Compared with the Ding’s 

method (method 1), the accuracy of our method is higher by 

12.38% with sensitivity surpasses by 16.15%, specificity 

surpasses by 10.58% and a higher MCC of 0.9408, which is a 

significant improvement in the identification of phage virion 

proteins.  Besides, it is obvious that the results of method 3 

and method 4 are much better than method 1 and 2, which 

indicates that the features extracted by the g-gap tripeptide 

composition are of better quality than the ones built by the g-

gap dipeptide composition. It can also be seen from the table 

that the choice of feature ranking criterion between ANOVA 

and information gain makes little difference when the feature 

extraction method is fixed. In addition, we plot the ROC 

curves of the 4 methods for a deeper comparison. The AUC 

values of each method are also shown in figure 2. 

Figure 2: The ROC curves and AUC values of the 4 methods 

As we can see from the figure 2, the method proposed in 

this paper (method 4) obtains the highest AUC of 0.9958, 

which surpasses the AUC of Ding’s method. The ROC curve 

of Ding’s method is all wrapped within ours, which shows the 

method proposed in this paper is more accurate. Moreover, 

compared with Ding’s, our method still gets a higher accuracy 

of 86.96% when the feature number is exactly the same as 

Ding’s method, which reveals that our method is more robust. 

Note that the main difference between method 3 and Ding’s 

method is the feature construction method. Ding used the g-

gap dipeptide composition while method 3 used the g-gap 

tripeptide composition. It can be revealed that the feature 

quality extracted from the g-gap tripeptide composition 

leading to a higher AUC is better than the g-gap dipeptide 

composition. Other conclusions are the same as what we got 

from the table 2, indicating that the g-gap tripeptide 

composition (g-gap TC) is a useful feature extraction method 

for related works. 

3. MATERIALS AND METHODS 

3.1 Benchmark dataset 

The database is the starting point for all bioinformatics 
work. At present, there are many free and open databases of 
protein sequences. The raw data in this study was obtained 
from a database named UniProt [23] for being the least 
redundant and most comprehensive of functional annotations 
in all the related database. For the purposes of obtaining a 
reliable benchmark dataset, the following rules were 
considered. Firstly, positive samples (virion proteins) are the 
phage proteins whose subcellular location is a virion while 
negative samples (non-virion proteins) are the ones whose 
subcellular location is otherwise. The protein sequences 
which are fragments of other proteins were dislodged. 
Secondly, a protein will be dislodged if its sequence length is 
less than 50 for the reason that these fragments cannot 

Table 2: The final results of the 4 methods 

method feature feature ranking criterion Sn(%) Sp(%) Acc(%) MCC 

1(Ding’s) g-gap DC ANOVA 75.76 89.42 85.02 0.6554 

2 g-gap DC information gain 71.71 89.90 84.09 0.6287 

3 g-gap TC ANOVA 92.92 99.51 97.39 0.9403 

4(our method) g-gap TC information gain 91.91 100 97.40 0.9408 
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describe the information contained in the entire protein 
sequence completely, which will lead to a bad accuracy of 
prediction results. Thirdly, if the protein sequences contain 
nonstandard letters, such as B, U, X or Z, these proteins were 
excluded for their ambiguous meanings. After following the 
previous strict screening procedures, a total of 121 phage 
virion and 231 phage non-virion proteins were obtained. The 
model obtained by training on a benchmark dataset which has 
a high degree of homology will be overestimated for not being 
representative. In order to get rid of redundant data, the CD-
HIT tool was used to remove the high similarity sequence by 
setting a cutoff threshold of 40%. After the final step, 307 
sequences were remained in the benchmark dataset, including 
99 phage virion protein sequences and 208 phage non-virion 
protein sequences. These proteins can be found from 
http://bigroup.uestc.edu.cn/virionpred/data/.  

3.2 The g-gap tripeptide composition (g-gap TC) 

The protein sequence is an indefinite length string consist 
of 20 English letters representing 20 different kinds of amino 
acids. Our first major concern is to translate a protein 
sequence into a mathematical expression for statistical 
prediction and to develop a sequence-based predictor for 
identifying phage virion protein. The most straightforward 
translation method is to translate the sample of protein P with 
L residues with its entire amino acid sequence as: 

where R1 represents the 1st residue of protein P, R2 represents 
the 2nd residue of protein P, and so forth. Subsequently, we 
can utilize sequence-similarity-search-based tools, such as 
BLAST algorithm [24] to identify protein virions based on 
sequence similarity.  However, it fails to work when the query 
sequence doesn’t have a high similarity with any sample in 
the training dataset. Thus, researchers often use vectors to 
represent the samples, which is much easier to handle via 
existing operation engines. There have been many feature 
extraction methods proposed. 

With the explosive growth of biological sequences in the 
post-genomic era, extracting features from proteins is not just 
one of the most important but also most difficult problems in 
computational biology. This is because all the existing 
machine learning algorithms can only handle vector but not 
sequence samples, as elucidated in a comprehensive review 
[25]. The simplest representation of protein sequence 
discretization is based on the amino acid composition (AAC) 
proposed by Nakashima and Nishikawa et al. [26]. This 
method is based on the hypothesis that the amino acid 
composition ratio determines protein characteristics, and the 
protein sequence P is represented by a 20-dimensional vector. 
However, this method completely ignores the information 
brought about by the sequence order. To avoid completely 
losing the sequence-pattern information for proteins, Chou et 
al. proposed a method that considers the composition of the 
pseudo-amino acids that affect the sequence residues. They 
added the physicochemical properties of amino acids when 
constructing sequence features and proposed the pseudo 
amino acid composition (PseAAC) [27]. Ever since the 
concept of Chou’s PseAAC was proposed, it has been widely 
used in nearly all areas of computational proteomics [11], 
[26]–[41],  for the increasingly usage of PseAAC, recently 
three powerful open access soft-wares, called ‘PseAAC-
Builder’, ‘propy’ and ‘PseAAC-General’ were established to 

generate various modes of Chou’s special PseAAC [42]. 
Notably, ‘PseAAC-General’ provides higher level feature 
vectors such as ‘Functional Domain’ mode, ‘Gene Ontology’ 
mode, and ‘Sequential Evolution’ and ‘PSSM’ mode. Based 
on the global description of protein sequences, Dubchak et al. 
proposed the composition, transformation and distribution 
(CTD) of amino acids feature building method [43]. In order 
to obtain more sequence-related information and find 
important relevant features, Lin et al. proposed a more general 
dipeptide composition called g-gap dipeptide composition (g-
gap DC) [6]. While compared with dipeptide composition, the 
tripeptide composition contains more sequence order and 
composition information of protein sequences. Wang et al. 
used amino acid polarity and side chain group masses to 
classify 20 amino acids into 7 groups, and then counted three 
consecutive amino acids, namely the frequency of occurrence 
of tripeptide composition, and constructed a 343-dimensional 
feature into SVM for training [44]. Lai et al. used a tripeptide 
composition consisting of three amino acids in succession and 
had a total of 8000-dimensional features. They also used SVM 
for classification and achieved good results on cancer relating 
proteins [45]. Particularly, recently a very powerful web-
server called ‘Pse-in-One’ [46] now updated to version ‘Pse-
in-One2.0’ have been established that can be used to generate 
feature vectors for protein/peptide and DNA/RNA sequences 
according to the users’ need or their own definition. 

Inspired by the above methods, we proposed a feature 
extraction method called g-gap tripeptide composition (g-gap 
TC) to mine the information contained in protein sequences. 
We still use formula (1) to represent the protein sequence. As 
for the g-gap tripeptide composition, it can be showed as 

 
𝐹 = 𝑅1 ⋯⏞

gap𝟏

𝑅1 ⋯⏞
gap𝟐

𝑅3 (2) 

where the R1, R2 and R3 represent the standard amino acids. 
gap1 is the gap between the first two residues and gap2 is the 
gap between the last two residues. There are 20 ×20 ×20 
=8000 kinds of tripeptide composition for 20 kinds of 
standard amino acids. In this study the gaps vary from 0 to 9 
to find the optimal gaps combination. When gap1 = g1 and  
gap2 = g2, a protein sequence can be discretized as 

 
𝐏 = [𝑓1

g1,g2 , 𝑓2
g1,g2 ,⋯ , 𝑓𝜉

g1,g2 ,⋯ , 𝑓8000
g1,g2]

Τ

 (3) 

where T represents a transpose operation, 𝑓𝜉
g1,g2  represents 

the frequency of the ξ-th tripeptide composition. 𝑓𝜉
g1,g2  is 

calculated by 

 
𝑓𝜉
g1,g2 =

𝑛𝜉
g1,g2

∑ 𝑛
𝜉
g1,g28000

𝜉=1

=
𝑛𝜉
g1,g2

𝐿 − g1 − g2 − 2
 (4) 

where 𝑛𝜉
g1,g2 represents the occurrence number of the ξ-th 

g1_g2_g𝑎𝑝 tripeptide composition, L is the length of protein P. 

3.3 Feature selection 

In order to economize the run-time and computational 
resources, it is a wise strategy to use a feasible algorithm to 
find the optimal features and eventually improve the 
prediction quality. To reduce the dimensions of the feature 
space and improve the precision of phage virion and non-
virion protein classification, information gain combined with 

 𝑃 =  𝑅1𝑅2𝑅3⋯𝑅𝐿 (1) 
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incremental feature selection (IFS) was performed during the 
process of feature selection in current works. Information gain 
is widely used as the term importance criterion in test 
classification problems. For a specific feature, the change in 
the amount of information with and without the feature is the 
feature’s information gain. The so-called amount of 
information is the entropy, described as follows: 

 
𝐻(𝐶) = −∑𝑝(𝑐𝑖) log 𝑝(𝑐𝑖)

𝑛

𝑖=1

 (5) 

where C represents a variety of n different possible values, 
each of which represented by ci. p(ci) represents the 
probability of ci. H(C) is the entropy of variety C. In this study, 
C only has 2 possible values 0 and 1, which represents the 
negative and positive samples respectively. The possibility of 
each kind of category is calculated from the frequency. For 
protein classification, a feature contributes more if the 
classification based on this single feature makes the entropy 
of the classification result smaller. Each feature was initially 
processed by bi-partition method and calculated the best 
information gain as its information gain value just as C4.5 
decision tree deals with continuous variable [47]. For each 
round, the information gain brought by feature f to 
classification C can be calculated as 

 𝐼𝐺(𝑓) = 𝐻(𝐶) − 𝐻(𝐶|𝑓)  (6) 

where 𝐻(𝐶|𝑓) has two cases. One is the appearance of the 
feature f, labeled f, and the other is that the feature f does not 
appear, marked as 𝑓′ . So the H(C|f) can be calculated by: 

 𝐻(𝐶|𝑓) = 𝑃(𝑓)𝐻(𝐶|𝑓) + 𝑃(𝑓′)𝐻(𝐶|𝑓′) (7) 

Obviously, the larger the 𝐼𝐺(𝑓 )  is, the greater the 
discrimination degree of the feature to the samples. Hence, we 
can sort all the features according to the 𝐼𝐺(𝑓 ) in descending 
order to obtain the following feature set: 

 𝐹 = {𝑓1, 𝑓2, ⋯ 𝑓𝑁} (8) 

where f1 denotes the feature with highest information gain, f2 
denotes the feature with second highest information gain and 
so forth. Subsequently, the incremental feature selection (IFS) 
method is used to select the optimal number of features. IFS 
method was used as follows for the reason that the number of 
features should not be too large because of the limited amount 
of samples and it would be too much time-consuming if the 
features were added one after the other. Firstly, we chose the 
feature subset started from a feature with the highest 
information gain in the ranked feature set. Secondly, the 
features with the next 10 highest information gain was added 
to the subset to obtain a new feature subset. The process was 
repeated until 800 candidates were added. The feature subset 
generated by the i-th iteration can be expressed as: 

 𝐹𝑖 = {𝑓1, 𝑓2, ⋯ , 𝑓1+10∗𝑖} (9) 

A model was built for each feature subset on the 
benchmark dataset. The subset with the highest accuracy is 
selected as the final optimized feature subset. 

3.4 Support vector machine (SVM) 

Support Vector Machine (SVM) algorithm is widely used 
in bioinformatics and have had a good performance on protein 
classification problems. The classification idea of SVM is to 
find a hyperplane in the feature space to divide data into two 
categories, which makes the interval between classes maximal. 
An important method in SVM is called the kernel function. 
This implicitly maps low-dimension linearly indivisible data 
into high-dimensional space. By using SVM, an optimal 
separation hyperplane will be constructed in the high- 
dimensional feature space to make a better separation of data 
than in the low-dimension space. Another advantage of SVM 
is that it still can effectively classify cases where the feature 
dimension is larger than the number of samples. For protein 
sequences, the number of samples after screening is usually 
small, but the dimensions of the features constructed are 
generally much larger than the total number of samples. For 
the reason mentioned above, SVM was adopted as the 
classification algorithm in this work. A grid search method 
was used to optimize the regularization parameter C and 
kernel parameter γ through 5-fold cross-validation.  The 
search spaces for C and γ are [215, 2-5] and [2-5, 2-15], 
respectively.  

Note that before using SVM to train the data, the 
experimental data must be normalized. Zero-mean 
normalization is the most common standardized method, also 
known as standard deviation standardization. The method is 
based on the mean µ and standard deviation σ of the original 
data to standardize the data. The distribution of processed data 
meets the standard normal distribution, which means the mean 
is 0 and the standard deviation is 1. Its conversion method is: 

 x∗ =
𝑥 − 𝜇

𝜎
 (10) 

3.5. Performance evaluation 

In statistical forecasting, there are several methods to 

evaluate the model, such as using independent dataset test, K-

fold cross-validation, and jackknife test. The independent test 

set refers to training the model using the training set while 

using the mutually independent test set to evaluate the quality 

of the model. Although this method seems simple, it also has 

certain defects. Since the training set and the test set are 

randomly divided, different divisions will produce different 

results owing to an unstable test result. Generally speaking, 

the larger the amount of data used to train the model, the better 

the trained model will generally be. The resulting model will 

be affected by using the test set for the un-fully use of data. 

Therefore, cross-validation method was proposed. K-fold 

cross-validation divides the entire data into k disjoint subsets, 

each of which is not repeated as a test set, and the other k-1 

copies are used as a training set to train the model each time. 

The results of k tests are combined to measure the 

performance of the model. In the jackknife test, all the 

samples in the benchmark dataset will be singled out one-by-

one and tested by the predictor trained by the remaining 
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samples. Of the three test methods, specifically the jackknife 

test is deemed as the least arbitrary that can always yield a 

unique result for a given benchmark dataset as elaborated in 

[22]. Accordingly, the jackknife test has been widely 

recognized and increasingly used by investigators to examine 

the quality of predictors [26], [42]–[46], [48]–[56]. However, 

to reduce the computational time, we adopted the 10-fold 

cross-validation in this study as done by many investigators 

with SVM as the prediction engine [57]–[65]. There are 

several kinds of evaluation metrics used to estimate the 

performance of the model. In the function prediction of 

protein sequences, researchers usually use accuracy (Acc), 

sensitivity (𝑆𝑛), specificity (𝑆𝑝), and Mathew’s correlation 

coefficient (MCC), which is calculated by 

 

{
 
 
 
 
 

 
 
 
 
 𝑆𝑛 = 1 −

𝑁−
+

𝑁+

𝑆𝑝 = 1 −
𝑁+
−

𝑁−

𝐴𝑐𝑐 = 1 −
𝑁−
+ +𝑁+

−

𝑁+ +𝑁−

𝑀𝐶𝐶 =
1 − (

𝑁−
+

𝑁+
+
𝑁+
−

𝑁−)

√(1 +
𝑁+
− −𝑁−+

𝑁+
)(1 +

𝑁−+ −𝑁+
−

𝑁− )

  

(11) 

 

Where 𝑁+ , 𝑁− represents the number of positive and 

negative samples respectively.  𝑁−
+, 𝑁+

−  represents the 

number of samples in which the positive sample is mistakenly 

classified into negative samples and the negative samples are 

mistakenly divided into positive samples. Compared with 

traditional metrics copied from math books, these metrics 

derived in [19], [23], [24] based on the Chou’s symbols [66]–

[68] are more intuitive and have been widely used among 

investigators [7], [11], [12], [15], [19], [20], [23], [28]–[39]. 

Note that, no matter the kind of metrics used, it is only valid 

only for the single-label systems, where each sample only 

belongs to one class. For the multi-label systems, where a 

sample may simultaneously belong to several classes, whose 

existence has become more frequent in system biology [13], 

[24], [40], [69], [70], system medicine [71], [72] and 

biomedicine [73], a completely different set of metrics as 

defined in [22] is needed. Of the aforementioned indicators, 

the most important are the Acc and MCC. The Acc reflects the 

overall accuracy of the model, and the MCC represents the 

reliability of the results of the algorithm. 𝑆𝑛, 𝑆𝑝 can be seen 

as the recall rates of positive and negative categories. 

To fully evaluate the predictive power of the model and 

display the results more vividly, the receiver operating 

characteristic curve (ROC curve) was used in this study. The 

ROC curve takes the true positive rate as the vertical axis and 

the false positive rate as the horizontal axis, depicting the 

trend of the model’s prediction ability under all thresholds. 

AUC (Area Under Curve) is the area under the ROC curve, 

and the greater the value of AUC, the stronger the 

predictability of the model. 

4. WEB-SERVER 

As pointed out in [74] and demonstrated in a series of 
recent publications [9], [13]–[20], [23], [39], [41], [69], [70], 
[75], user-friendly and publicly accessible web-servers 
represent the future direction for developing practically more 
useful prediction methods and computational tools. Actually, 
many practically useful web-servers have increasing impacts 
on medical science [25], driving medicinal chemistry into an 
unprecedented revolution [76]. We have also established a 
web-server called VirionPred for the identification method as 
mentioned in this paper and is shown in Figure 3. Users may 
access the web server at 
http://bigroup.uestc.edu.cn/virionpred/. The input of the web-
server is a set of protein sequences in FASTA format, which 
can be either uploaded as a single file or copied/pasted into 
the input box. After submitting the protein sequences and 
click the submit button, results will be shown in a new 
interface. 

Figure 3: A semi-screenshot of the VirionPred webserver 

5. CONCLUSION 

Phage may provide a useful tool to find novel antibacterial 
drugs and understand the relationship between phage and host 
bacteria. Accurate identification of phage virion proteins from 
phage protein sequences is significant to understanding the 
complex virulence mechanism in host bacteria and the 
influence of bacteriophages on the development of 
antibacterial drugs. Although the performance of existing 
methods has been attested to have encouraging results, the 
accuracy of these methods is still far from satisfactory. The 
method proposed in this paper introduced a new feature 
construction method called the g-gap tripeptide composition. 
Combined with information gain & IFS feature selecting 
method and SVM algorithm, the method reached an accuracy 
up to 97.40% with MCC 0.9408 evaluated by 10-fold cross 
validation. The result outperforms other state-of-the-art 
methods upon. Our proposed method can be adopted as an 
improved method of identifying phage virion proteins and 
provide an effective feature constructing method for reference 
on other related works. 
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As future work, we will combine the g-gap TC and g-gap 
DC features to perform protein identification tasks. The 
combination of features of different gaps also meets our 
interests. Furthermore, we will work on other similar 
problems by using the g-gap TC to see the scope of application. 
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