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Abstract: (1) Background: Electricity consumption data are often made up of complex, unstable series
that have different fluctuation characteristics in different industries. However, electricity demand
forecasting is a prerequisite for the control and scheduling of power systems. (2) Methods: As most
previous research has focused on prediction accuracy rather than stability, this paper developed
a decomposition-based combination forecasting model using dynamic adaptive entropy-based
weighting for total electricity demand forecasting at the engineering level. (3) Results: To further
illustrate the prediction accuracy and stationarity of the proposed method, a comparison analysis
using an analysis of variance and an orthogonal approach to solve the least squares equations
was conducted using classical individual models, a combination forecasting model, and a
decomposition-based combination forecasting model. The proposed method had a very satisfactory
overall performance with good verification and validation compared to autoregressive integrated
moving average (ARIMA) and artificial neural-networks (ANN). (4) Conclusion: As the proposed
method dynamically combines various forecast models and can decompose and adapt to various
characteristic data sets, it was found to have an accurate, stable forecast performance. Therefore, it
could be broadly applied to forecasting electricity demand and developing electricity generation
plans and related energy policies.

Keywords: dynamic adaptive forecast; entropy-based weighting; electricity demand forecasting

1. Introduction

As electricity demand forecasting is essential for energy management, maintenance scheduling,
and secure modern power management [1], researchers have long been focused on developing
optimum forecasting methods.

Depending on the selected time horizon, demand forecasting can be short-term from an hour to
a week, medium-term from a week to a year, or long-term for over a year. Medium-term electricity
demand forecasting, and especially monthly forecasting, is not only used to balance supply and
demand [2] but is also an important index for many associated decisions [3] such as equipment
maintenance, fuel trading, and bilateral electricity transactions, which are generally made months in
advance.

Many scientific and engineering methods to improve the accuracy of electricity demand
forecasting have been proposed in recent years [4,5]. Prediction accuracy and stability are vital for
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electricity demand forecasting at the engineering level. However, as complex machine learning
methods require staff, hardware, and software, local authorities and local electricity regulatory
commissions are generally seeking effective, simple, electricity demand forecasting models. The main
objective of this paper, therefore, is to propose a dynamic adaptive forecasting model to accurately and
effectively forecast total electricity demand at the engineering level that could be broadly applied to
electricity demand forecasting.

The remainder of the paper is organized as follows. Section 2 presents the problem and research
methods, Section 3 outlines the data handling, error measurement forecasting, entropy, combination
forecasting, the decomposition-based combination forecast model and its framework, Section 4 verifies
and validates the proposed model through a step by step comparison analysis with six individual
models, a combination forecasting model, a decomposition-based combination forecasting model and
other models, and Section 5 summarizes the paper and gives guidance on future research directions.

2. Literature Review

Because of rising electricity demand, growing environmental/health concerns, and shrinking
resource availability, the need for more accurate electricity demand forecasting models has increased,
which has in turn attracted significant research attention [6]. Two main types of forecasting methods
have been developed—individual models and hybrid models.

There are two main types of individual models—classical forecasting models that analyze past
electricity consumption at the engineering level such as exponential smoothing [7], ARIMA [8], state
space models [9], grey models [10] and linear regression [11], and machine learning models such as
artificial neural-networks (ANN) [12], support vector regression [13], Gaussian processes [14] and
ensemble learning methods [15].

Many studies have shown that a combination of different models can improve forecast
performance and, as no one forecasting method has been found to obtain the best results for every
circumstance, combination forecasting is probably the best way to improve accuracy [16]. When models
are combined, they can include a wider range of electricity consumption features and overcome the
defects in the individual models. There are two main types of hybrid electricity load forecasting models:
in the first, the electricity demand is first predicted separately by the different models, the weight of
each model is then calculated, and the final forecasting value is determined by adding each model’s
forecasting value multiplied by its weight [17]; and in the second, the hybrid model decomposes the
electricity consumption data into several sub-series, each sub-series is forecast using a suitable model,
and the final forecast results are the sum of each of the sub-series’ forecasting results [18]; that is, the
first is a combination of models and the second involves data decomposition.

As noted by Wang et al. [19], the more system factors that can be considered, the higher
the forecasting precision. Electricity data rules and characteristics can be easily obtained using
decomposition or combination [20]; for example, Zhang et al. [21] applied a decomposition approach
to forecast short-term electricity demand, in which the data series were split into two new series and
two different models trained to forecast these separately, Li et al. [22] proved that a random forest
technique based on ensemble empirical mode decomposition was able to improve the forecasting
accuracy of daily enterprise electricity consumption, Laouafi et al. [1] developed a combination
methodology for electricity demand forecasting, for which six individual models were applied to the
real-time load data, and the final load estimation obtained by adding each model’s forecasting value
multiplied by its weight, and Chen et al. [23] proposed a generalized model for wind turbine faulty
condition detection using a combination prediction approach and information entropy.

However, there have been few studies that have used both decomposition and a combination
forecasting model, and most studies have sought to prove method effectiveness by comparing
the error means rather than the statistical significance. To simultaneously achieve adaptive,
controllable processes, this paper proposes a decomposition-based combination forecast method
that can dynamically adapt to various forecast models using combination, and dynamically adapt to
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the various characteristics of the different data sets through decomposition. Previous research has
tended to determine the combined weights for the combination model using only one measurement
such as MAE [24] or absolute percentage error [1]; however, this paper applies five entropy-based error
measurements to dynamically weight the individual model, and introduces the analysis of variance
and an orthogonal approach to solve the least squares equations to analyze the effectiveness of the
statistical significance of the proposed method.

3. Materials and Methods

3.1. Data Handling

This study was based on electricity consumption data from January 2007 to October 2009 in
Sichuan Province, China. The data sets were generated from the Electricity Saving Association, which
is the major source of power data in the province and covers almost all sectors of the economy.
While some of the observations were suspect (for example, almost all data from September 2009),
all data were used for comparison purposes.

To better validate the proposed method, total electricity demand and all components were forecast.
The national economy electricity consumption classifications divides total electricity demand into four
levels, which respectively cover 2, 5, 8, and 23 types of industries for the decomposition. Table 1 lists
the industries and their codes, and Figure 1 shows the decomposition details.

Table 1. Power consumption by industry sector.

Code Power Industry Code Power Industry

s00 Total power consumption s45 Fishery power consumption
s11 Nonresidential power consumption s46 Coal mining power consumption
s12 Residential power consumption s47 Production and supply of electricity, gas and water power

consumption
s21 Total Primary industry power consumption s48 Manufacturing power consumption
s22 Total Second industry power consumption s49 Warehousing industrial power consumption
s23 Total Tertiary industry power consumption s410 Transportation power consumption
s24 Urban residential power consumption s411 Postal service power consumption
s25 Rural residential power consumption s412 Real estate power consumption
s32 Industry power consumption s413 Financial industrial power consumption
s31 Agriculture, forestry, animal husbandry and fishery

power consumption
s414 Leasing, business services, resident services and other

services power consumption
s33 Construction industry power consumption s415 Catering and accommodation power consumption
s34 Information transfer, computer services and software

power consumption
s416 Wholesale and retail power consumption

s35 Business, catering and accommodation power
consumption

s417 Computer services and software power consumption

s36 Financial, real estate and residential property services
power consumption

s418 Information transfer power consumption

s37 Public utilities and management organizations power
consumption

s419 Public management, social organization, and
management organization

s38 Transportation, warehousing and postal power
consumption

s420 Health, social security and social welfare power
consumption

s41 Forestry power consumption s421 Education power consumption
s42 Services power consumption for agriculture, forestry,

animal husbandry and fishery
s422 Scientific research, technical services, and geological

prospecting power consumption
s43 Agriculture power consumption s423 Water environment and public facilities management

power consumption
s44 Animal husbandry power consumption

y1
ij, y2

ij, · · · , y34
ij denote the monthly electricity data for industry sij, where i represents i level at

which total electricity demand is divided and j represents jth types of industry at level i. To better
elaborate the process, the data were divided into training data and test data. The procedures for each
industry were as follows: first, time series s1

ij = {y1
ij, y2

ij, · · · , y24
ij } were used as the training data set

with a corresponding forecast value of {ŷ25
ij }. Then, s2

ij = {y1
ij, y2

ij, · · · , y25
ij } were used as the training
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data set to forecast {ŷ26
ij }. Similarly, s10

ij = {y1
ij, y2

ij, · · · , y33
ij } were used to forecast {ŷ34

ij }, as shown in
Table 2.

s38

s37

s36

s35

s34

s41

s42

s32

s33

s31

s23

s22

s21

s24

s25

s12

s11

s00

s43

s44

s45

s47

s46

s48

s415

s416

s417

s418

s423

s419

s422

s421

s420

s413

s414

s412

s410

s411

s49

sub-subsubsectors
(decomposition from

lever four)

sectors
(decomposition from

lever one)

sub-subsectors
(decomposition from

lever three)

sub-sectors
(decomposition from

lever two)

Total electricity demand forecast

Figure 1. Electricity decomposition.
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Table 2. Data division for each industry.

Training Set Test Set

s1
ij = {y1

ij, y2
ij, · · · , y24

ij } {y25
ij }

s2
ij = {y1

ij, y2
ij, · · · , y25

ij } {y26
ij }

s3
ij = {y1

ij, y2
ij, · · · , y26

ij } {y27
ij }

s4
ij = {y1

ij, y2
ij, · · · , y27

ij } {y28
ij }

s5
ij = {y1

ij, y2
ij, · · · , y28

ij } {y29
ij }

s6
ij = {y1

ij, y2
ij, · · · , y29

ij } {y30
ij }

s7
ij = {y1

ij, y2
ij, · · · , y30

ij } {y31
ij }

s8
ij = {y1

ij, y2
ij, · · · , y31

ij } {y32
ij }

s9
ij = {y1

ij, y2
ij, · · · , y32

ij } {y33
ij }

s10
ij = {y1

ij, y2
ij, · · · , y33

ij } {y34
ij }

3.2. Forecast Error Measurement

The Mean Absolute Deviation (MAD), Mean Squared Error (MSE), Cumulative Sum of Forecast
Errors (CFE), Mean Absolute Percentage Error (MAPE), and Tracking Signal and Absolute Relative
Error (ARE) were all applied to assess the forecasting capability, the definitions for which are as follows:

MAD =
∑n

t=1 |At − Ft|
n

, MSE =
∑n

t=1(At − Ft)2

n
,

CFE =
∑n

t=1(At − Ft)

n
, MAPE = 100% ∗

∑n
t=1(|

At−Ft
At
|)

n
,

Trk.Signal = ∑n
t=1(At − Ft)

MAD
, ARE =

∣∣∣∣At − Ft

At

∣∣∣∣ ,

where At is the actual value in period t, Ft is the forecast value in period t, and n is the total number of
forecast periods..

The MAD, MSE, CFE, MAPE, and Trk.Signal were calculated for each training set, and the
combination models selected by considering all five measurements, which were weighted using the
entropy-based method outlined in Sections 3.3 and 3.4. ARE statistical analyses were used on each test
set to assess the models and derive additional information, as detailed in Section 4.

3.3. Entropy

To weight the five measurements, the entropy [25] was revised as outlined in the following steps.
Step 1: The error matrix D = [xab]mn was calculated for every time series sl

ij, where xab was
the ath index value (ath individual forecast method) for the bth index attribute (bth forecast error
measurement), and m and n were the number of individual forecast methods and the number of
forecast error measurements.

Step 2: Proportion pab, which was the ath model for the proportion of the feature or the
contribution of the feature under the terms of the bth index, was calculated. To capture more
information from the data, the proximity index rab =

√
x∗b /xab was applied, where x∗b = min |xab| was

the ideal value for the jth index attribute; then, pab = rab/ ∑m
a=1 rab.

Step 3: The entropy for the b-term indicator Eb was defined to represent the total entropy
contribution of all models to the bth indicators, and Eb = −d ∑m

a=1 pab ln pab, where the constant
d = 1/ ln m.

Step 4: The index difference coefficients gb; gb = 1− Eb were calculated, in which the difference
coefficient gb indicated the extent of the inconsistent index contributions under the bth index attribute
determined by Eb.

Step 5: The weighting coefficients were determined. After weighting the coefficient,
Pb = gb/ ∑n

b=1 gb was the normalized weight for the weight coefficient.
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3.4. Combination Forecasting Model

As is well known, the classical forecasting methods—moving average (MA), the moving
average with linear trend (MAT), single exponential smoothing with linear trends (SEST), double
exponential smoothing with linear trends (DEST), the Holt-Winters additive algorithm (HWA), and
the Holt-Winters multiplicative algorithm (HWM)—each have a different ability to deal with trends
and seasonality [26–29].

However, compared with other complex methods and especially with modern intelligent
forecasting models, these classical models are unable to completely adapt to different features in
different data series. Therefore, to prove the effectiveness of the proposed method, these simpler
methods were applied as individual methods in this paper rather than the modern intelligent
forecasting models.

MA and exponential smoothing models are simple to use and do not require an in-depth
knowledge of forecasting methods. HWM is the most complex model of the six models, so the
overall computation efficiency of the proposed method would be restricted by HWM if the six models
were employed in a parallel computation environment. However, the main advantages of HWM are its
ease of application, speed, and reduced computational burden [30]; therefore, because its forecasting
accuracy is similar to more complex methods, this method could be more easily applied by decision
makers.

The combination forecast model (CF) was used to forecast the subsequent month’s electricity
demand for all the time series (sl

ij) in the training set. As suggested by Laouafi et al. [1], combined
forecasting can improve forecast accuracy and can be employed to combine the forecasts from the
primary individual models.

F( f1(y), f2(y), · · · , f6(y)) = w1 f1(y) + w2 f2(y) + · · ·+ w6 f6(y), (1)

where fi is related to the individual forecasting methods that transform the real electricity consumption
y of the previous months to its forecasting ŷ, and wi represents the weight of the ith individual
forecasting method calculated from real electricity consumption y in the preceding months.

For each time series sl
ij, there was a weight vector w, which was calculated as follows:

Step 1: wb
a was first calculated, which was the weight of the ath individual forecasting method

judged by the bth forecasting error measurement. The inverse error weights ensured that the models
with smaller errors were assigned a greater weight:

wb
a =

e−1
ab

∑n
i=1 e−1

ab

(∀a = 1, 2, · · · , 6, ∀b = 1, 2, · · · , 5),

where eab is the error of the ath forecasting model judged by the bth forecasting error measurement.
Step 2: The entropy of pb was calculated as described in Section 3.3, where pb was aligned to the

weight of the bth forecasting error measurement and ∑ pb = 1.
Step 3: The combined weight wa was calculated

wa =
m

∑
j=a

wb
a pb (∀a = 1, 2, · · · , 6 ∀b = 1, 2, · · · , 5).

3.5. Decomposition-Based Combination Forecasting

A decomposition-based combination forecasting model is proposed, in which Gu
ij denotes the

electricity demand forecasting for industry sij using decomposition-based combination forecasting at
level u (DCFu).

Gu
ij = ∑

v
Fuv, i = 0, 1, 2, 3, u = i, . . . , 4, (2)
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where Fuv is the forecast value using the combination forecasting model for industry suv, and v
represents the vth types of industry at level u.

For example, based on Equation (2), the total electricity demand can be forecast using the
decomposition-based combination method, as follows:

G1
00 = F11 + F12 (DCF1), G2

00 =
5

∑
v=1

F2v (DCF2),

G3
00 =

8

∑
v=1

F3v (DCF3), G4
00 =

23

∑
v=1

F4v (DCF4).

To explain the proposed method more clearly, a flow chart was developed, as shown in Figure 2
(decomposition-based CF at level four).

        Input series       -
(decomposition  from level four)

Start

MAT (    ) HMW (    )

MAD
MSE
CFE

MAPE
Trk.Signal

MA (    ) SEST (    ) HWA (    )DEST (    )

for data series

MAD
MSE
CFE

MAPE
Trk.Signal

MAD
MSE
CFE

MAPE
Trk.Signal

MAD
MSE
CFE

MAPE
Trk.Signal

MAD
MSE
CFE

MAPE
Trk.Signal

MAD
MSE
CFE

MAPE
Trk.Signal

y

     (weight of ath
method judged by the
bth  measurement.)

entropy

         (weight of bth
forecasting error

measurement)

(weight of     )

          (combination
forecast for data series      )

end

b
aw bP

aW

1f

23j 

6f5f4f3f2f

af
1j j 

1j 

23

00 41 jj
G F


 

41s 423s

4 jF
4 js

4 js

Figure 2. The Flow chart for the dynamic adaptive forecasting process.
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The analysis framework for the work was as follows:
Step 1: The total electricity demand (s00) in the target society was decomposed into four industry

levels (Figure 1), coded at level one to four: s1j, s2j, s3j, s4j respectively (Table 1).
Step 2: For sij, ten time series groups were determined for each industry; s1

ij ∼ s10
ij (see the details

in Section 3.1).
Step 3: For sl

4j, the future electricity demand was forecast using the six individual models and CF.

For sl
3j, the future demand was forecast using the six individual models and CF and DCF4. For sl

2j,

the future demand was forecast using the six individual models and CF, DCF3, and DCF4. For sl
1j,

the future demand was forecast using the six individual models and CF, DCF2, DCF3, and DCF4.
For sl

00, the future demand was forecast using the six individual models and CF, DCF1, DCF2, DCF3,
and DCF4.

Step 4: To compare and analyze the six individual models and the combination model for sij,
an ANOVA and an orthogonal approach to solve the least squares equations were applied for which
the AREs were regarded as the observation variables; therefore, there were 10 observations with 7
classification variables. For details, see Sections 4.1 and 4.2) .

Step 5: The decomposition-based CF models were compared and analyzed. For s3j, an ANOVA
and an orthogonal approach were applied for which the AREs were regarded as the observation
variables; therefore, there were 10 observations and 8 independent variables, as shown in Section 4.3.1.
For s2j, an analysis of variance was applied for which there were 9 independent variables, as shown
in Section 4.3.2. For s1j, an analysis of variance was applied for which there were 10 independent
variables, as shown in Section 4.3.3. For s00, an analysis of variance was applied for which there were
11 independent variables, as shown in Section 4.3.4.

Step 6: To further substantiate the forecasting results for DCF4, a comparison analysis with other
forecasting methods such as ARIMA and ANN was conducted, as shown in Section 4.4.

4. Results and Discussion

This section gives step-by-step comparison analyses for the individual models, the combination
forecasting model, and the decomposition-based combination forecasting method.

4.1. Analysis of the Individual Methods

As both MAPE and MSE are average values, the outliers are also averaged, and therefore it is often
difficult to detect the worst prediction and the forecasting stability. Therefore, to compare the impact
and significance of the forecasting accuracy for each forecast method, in this section, an ANOVA was
conducted with the comparison tests on ARE.

The forecasting error distribution (shown in Figure 3) was represented using schematic
box-and-whisker plots, each of which contained forecast errors from the individual and the CF
methods.

With the mean, median, Q1 (first quartile), Q3 (third quartile), and the outliers (more above
Q3+ 1.5 ∗ IQR, where IQR = Q3−Q1) as the comparison indicators, the adaptability of the individual
methods was estimated, with the Q1, Median, and Q3 columns respectively providing the lower
quantile, median, and upper quantile. The best, the second best, the worst, and the second worst
individual methods for each industry are shown in Table 3.
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s00 s11

s12 s21

s22 s23

s24 s25

s31 s32

Figure 3. Cont.
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s35 s36

s37 s38

s41 s42

s43 s44

Figure 3. Cont.
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s45 s46

s47 s48

s49 s410

s411 s412

s413 s414

Figure 3. Cont.
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s415 s416

s417 s418

s419 s420

s421 s422

s423

Figure 3. ARE distribution by ANOVA for every industry electricity demand.
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Table 3. Method adaptability for each industry.

Data The Best The Second Best The Worst The Second Worst CF Rank Unsuitable for the Data

s00 SEST DEST HWA HWM 2
s11 SEST DEST HWA HWM 4
s12 HWA HWM WAT SEST 3
s21 HWA HWM MAT DEST 3
s22 SEST DEST HWA HWM 5
s23 HWA HWM MAT DEST 3
s24 HWA HWM MAT DEST 4
s25 HWA HWM MAT DEST 4
s31 MA HWM DEST MAT 2 unsuitable
s32 SEST DEST HWA HWM 3
s33 DEST SEST MAT HWA 4
s34 HWA HWM MAT HWA 4
s35 HWA HWM MAT SEST 3
s36 HWM HWA MAT DEST 5
s37 SEST MA MAT DEST 3
s38 SEST MA MAT DEST 2
s41 DEST SEST HWA HWM 1
s42 DEST MAT HWA HWM 1 unsuitable
s43 SEST SEST MAT HWM 1
s44 HWA HWM MAT DEST 1
s45 SEST HWM MAT DEST 2 unsuitable
s46 MA SEST HWM HWA 3
s47 MA SEST MAT DEST 6
s48 SEST MA HWA HWM 4
s49 SEST MA MAT DEST 3
s410 HWM HWA MAT SEST 4
s411 SEST MA MAT DEST 2
s412 HWA HWM MAT DEST 2
s413 HWA HWM MAT MA 1
s414 HWA HWM MAT MA 3
s415 HWM HWA DEST MAT 4
s416 HWM HWA MAT MA 6
s417 MA SEST MAT DEST 1 unsuitable
s418 SEST MA MAT DEST 2
s419 HWA HWM MAT MA 3 unsuitable
s420 HWM HWA MAT DEST 1
s421 DEST SEST HWA HWM 4
s422 HWA HWM MAT DEST 5
s423 MA DEST MAT HWA 1

As can be seen in Figure 3, as the null hypothesis (same average estimates) was not able to be
rejected at a 0.05 significance level, there were no major differences between the seven methods, which
indicated that these classical time series forecasting methods could also be useful for forecasting
electricity demand, which was consistent with the results in many previous studies. However, Figure 3
also indicates that MA also had good model fitness in some industries, and as the Q3 was lower than
10% and there were no outliers for s11, s22, s32, s34 and s410, it also had a good forecasting performance.
More importantly, an ARE lower than 10% is generally considered very satisfactory in engineering.
Table 3 also shows that the MA had the best performance for s31, s46, s417 and s423 compared with the
other individual methods. Unfortunately, MA also performed poorly; for s41, s413, s414 and s416 MA
had the second worst performance compared with the other individual methods.

Karim and Alwi [31] concluded that the exponential smoothing technique had a better
performance than the MA. Similarly, Figure 3 shows the effectiveness of SEST in some industries as
the Q3 was lower than 0.1 and the ARE means were lower than 0.05 for s00, s11, s22, s32, s48 and s410.
As shown in the first column of Table 3, SEST was the best individual method 11 times (28.2%) and
MA was the best individual method five times (12.8%).

Figure 3 also shows that DEST was also an effective method and was able to perform well in some
industries; the ARE means were lower than 0.05 for s00, s11, s34, s49 and s410 and the Q3 was lower than
0.1 for s00, s11, s22, s32, s34, s410 and s421. In addition, DEST had the best performance for s33, s41, s42

and s421 compared to the other individual methods.
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Hussain et al. [5] proved that the Holt-Winters forecasting model could have robust results, and
as shown in Table 3, this model outperformed some other methods in some industries. The MA, MAT,
SEST, DEST, HWA and HWM models were respectively identified as the best individual methods five
times (12.8%), zero times(0%), 11 times (28.2%), four times (10.3%), 14 times (35.9%) and five times
(12.8%), with the HWA, and HWM together accounting for 49.2%. The MA, MAT, SEST, DEST, HWA,
and HWM were respectively identified as the second best individual methods six times(15.4%), one
time (2.6%), six times (15.4%), six times (15.4%), five times (12.8%) and 15 times (38.5%), the HWA and
HWM together accounting for 51.3%. These results demonstrated that the Holt-Winters forecasting
method outperformed the other individual methods in most cases.

However, it is somewhat difficult to explore the effectiveness and superiority of the Holt-Winters
forecasting method as special attention needs to be paid to accuracy. In some cases, none of the
methods was found to be suitable. As shown in Figure 3 and Table 3, however, for most of the rest, the
Holt–Winters forecasting method produced accurate results, with the Q3 being lower than 0.1 and the
median and means being lower than 0.05.

However, a further analysis of Figure 3 and Table 3 indicated that HWA and HWM were the worst
individual methods eight times (20.5%) and one time (2.6%), and the second worst individual methods
four times (10.25%) and nine times (23.1%). Therefore, as the Holt-Winters forecasting method was not
available for all the time series data, it could be unhelpful for electricity demand forecasting in some
industries.

From these analyses, it was concluded that as there was no one technique that was able to always
obtain better forecasting results, different time series data sets require different individual methods.
Therefore, there is no best forecasting model for the electricity data sets from different industries.

4.2. Analysis of the Combination Forecasting Model

In the combination forecasting model proposed in this paper, inverse error weights were used so
that the individual methods with less errors received an increased weight; that is, the advantages of
each individual method were combined to improve the forecasting accuracy. Figure 3 shows that the
CF had excellent forecasting performance as the Q3 was lower than 0.1 for s00, s11, s12, s22, s410 and the
median was lower than 0.05 for s00, s34 and s410.

Column 6 in Table 3 shows the CF Rank for the combination forecasting model compared to the
other seven forecasting methods for each different industry. The CF model was respectively ranked
from one to eight, 8, 7, 10, 9, 2, 3, and 0 times; that is, the combination forecasting method ranked
in the top three 74.9% of the time, indicating its overall effectiveness. These results clearly indicated
that forecasting combinations can yield unbiased forecasts even if the individual forecasts are biased.
However, a more in-depth analysis of Figure 3 indicated that there were some industries in which
none of the methods (including the combination model) were useful; s31, s45, s417, s419, s422.

To determine the reason for this, the original electricity data from each industry were reanalyzed,
from which it was found that there was a large gap between September 2009 and the other months in
most industries. Therefore, it was concluded that a combination approach was not suitable when the
data were highly volatile.

4.3. Comparison Analysis of the Decomposition Experiments

To demonstrate the decomposition-based CF method, in this section, an ANOVA was used to
analyze the electricity demand forecasting at the sub-subsector levels, the sub-sector levels, the sector
levels, and the total aggregate level.

In the ANOVA, the ‘B’ following the parameter estimates indicated that the estimates were biased
and did not represent a unique solution to the normal equations (Figure 4a). However, when using
the orthogonal approach (ORTHOREG) to solve the least squares equations, more accurate estimates
were produced compared to the other regression procedures. Figure 4b shows that the ORTHOREG
fit achieved the same root mean square error (RMSE) as shown in the ANOVA table but avoided the
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spurious singularities; therefore, the following analyses only considered the ANOVA. Furthermore,
while there were no significant differences between DCF4 and the other methods when the other
methods were superior to DCF4 in all situations, there were significant differences between DCF4
and other methods when DCF4 was superior to other methods in some situations. Figure 5a,b shows
that the differences between DCF4 and the MAT groups (for s23) were marginal (p = 0.0959), and that
the differences between DCF4 and the MAT (for s35) were marginally significant (p = 0.0402), which
indicated that DCF4 may be more effective. A detailed analysis was then conducted, as outlined in
the following.

Dependent Variable: F1

Source DF Sum of Squares Mean Square F Value Pr > F

Model 10 0.00315055 0.000315055 0.15 0.9986

Error 99 0.20257481 0.00204621

Corrected Total 109 0.20572537

R-Square Coeff Var Root MSE F1 Mean

0.015314 88.63001 0.045235 0.051038

Parameter Estimate Standard Error t Value Pr > |t|

Intercept 0.0496731790 B 0.01430458 3.47 0.0008

method CF -.0054778167 B 0.02022973 -0.27 0.7871

method DCF1 0.0051766858 B 0.02022973 0.26 0.7986

method DCF2 0.0058244871 B 0.02022973 0.29 0.7740

method DCF3 0.0082023300 B 0.02022973 0.41 0.6860

method DEST -.0002001710 B 0.02022973 -0.01 0.9921

method HWA 0.0013328606 B 0.02022973 0.07 0.9476

method HWM -.0014874089 B 0.02022973 -0.07 0.9415

method MA -.0006536303 B 0.02022973 -0.03 0.9743

method MAT 0.0103799429 B 0.02022973 0.51 0.6090

method SEST -.0080833798 B 0.02022973 -0.40 0.6903

method DCF4 0.0000000000 B . . .

(a) PROC GLM

Dependent Variable: F1

Source DF Sum of Squares Mean Square F Value Pr > F

Model 10 0.003150554 0.0003150554 0.15 0.9986

Error 99 0.2025748118 0.0020462102

Corrected Total 109 0.2057253657

Root MSE 0.0452350552

R-Square 0.015314368

Parameter DF Parameter Estimate Standard Error t Value Pr > |t|

Intercept 1 0.04967317902272 0.0143045805 3.47 0.0008

(method='CF') 1 -0.00547781674781 0.0202297317 -0.27 0.7871

(method='DCF1') 1 0.00517668575842 0.0202297317 0.26 0.7986

(method='DCF2') 1 0.0058244871403 0.0202297317 0.29 0.7740

(method='DCF3') 1 0.00820233001192 0.0202297317 0.41 0.6860

(method='DEST') 1 -0.00020017104435 0.0202297317 -0.01 0.9921

(method='HWA') 1 0.00133286056826 0.0202297317 0.07 0.9476

(method='HWM') 1 -0.0014874088854 0.0202297317 -0.07 0.9415

(method='MA') 1 -0.00065363025978 0.0202297317 -0.03 0.9743

(method='MAT') 1 0.01037994293493 0.0202297317 0.51 0.6090

(method='SEST') 1 -0.00808337977798 0.0202297317 -0.40 0.6903

(method='DCF4') 0 0 . . .

(b) PROC ORTHOREG

Figure 4. The GLM procedure and the ORTHOREG procedure for s00.
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Dependent Variable: F1

Source DF Sum of Squares Mean Square F Value Pr > F

Model 8 0.0488046698 0.0061005837 1.31 0.2529

Error 81 0.3786498901 0.00467469

Corrected Total 89 0.4274545599

Root MSE 0.0683717047

R-Square 0.1141751062

Parameter DF Parameter Estimate Standard Error t Value Pr > |t|

Intercept 1 0.08587496397816 0.0216210314 3.97 0.0002

(method='CF') 1 -0.0029831317626 0.0305767559 -0.10 0.9225

(method='DCF3') 1 0.00219893329617 0.0305767559 0.07 0.9428

(method='DEST') 1 0.04900803854892 0.0305767559 1.60 0.1129

(method='HWA') 1 -0.01628373269125 0.0305767559 -0.53 0.5958

(method='HWM') 1 -0.00145077170975 0.0305767559 -0.05 0.9623

(method='MA') 1 0.03429334644064 0.0305767559 1.12 0.2654

(method='MAT') 1 0.05151161281957 0.0305767559 1.68 0.0959

(method='SEST') 1 0.00640728664371 0.0305767559 0.21 0.8345

(method='DCF4') 0 0 . . .

(a) s23

Dependent Variable: F1

Source DF Sum of Squares Mean Square F Value Pr > F

Model 7 0.0753450371 0.0107635767 1.77 0.1068

Error 72 0.4380333079 0.0060837959

Corrected Total 79 0.513378345

Root MSE 0.0779986919

R-Square 0.1467631774

Parameter DF Parameter Estimate Standard Error t Value Pr > |t|

Intercept 1 0.10211039458111 0.0246653521 4.14 <.0001

(method='CF') 1 0.0117744205932 0.0348820755 0.34 0.7367

(method='DEST') 1 0.05590507774972 0.0348820755 1.60 0.1134

(method='HWA') 1 -0.01515159555613 0.0348820755 -0.43 0.6653

(method='HWM') 1 0.00211776701587 0.0348820755 0.06 0.9518

(method='MA') 1 0.04510189246904 0.0348820755 1.29 0.2002

(method='MAT') 1 0.07288908472264 0.0348820755 2.09 0.0402

(method='SEST') 1 0.05756160301778 0.0348820755 1.65 0.1033

(method='DCF4') 0 0 . . .

(b) s35

Figure 5. Parameter Estimate.

4.3.1. Forecasting for the Sub-Subsector Electricity Demand

Based on Equation (2), the sub-subsector electricity demand was forecast using a
decomposition-based CF at level 4.

G4
3j = ∑

v
F4v, j = 1, · · · , 8,

where G4
3j was the forecast for industry s3j using the decomposition-based CF at level 4 and F4v was

the forecast for industry s4v using the combination forecasting model. For example, the forecast using
DCF4 for industry s31 was G4

31 = F41 + F42 + F43 + F44 + F45.
The ARE outputs using the eight methods at the sub-subsector level were compared using

ANOVA, and the forecasting error distribution is shown in Figure 6. Figure 1 shows that there was no
branch industry for s33, indicating that no DCF4 existed for s33-plus. The distribution of the forecast
errors in Figure 6 shows the data discrepancy and biases as well as the outliers. For s32-plus, DCF4
achieved the lowest ARE means compared to all other methods except SEST; however, SEST had two
outliers. DCF4 also achieved the lowest median except for SEST and MA, but MA had an internal cap
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that was far greater than for the DCF4. More importantly, 75% of the DCF4 AREs were lower than
10%, which was considered satisfactory.

s31-plus s32-plus

s34-plus s35-plus

s36-plus s37-plus

s38-plus

Figure 6. ARE distribution by ANOVA for sub-sector electricity demand.

For s38-plus, DCF4 had the best forecasting performance as it achieved the lowest ARE means, Q1
and Q3, and had no outliers. For s34-plus, the DCF4 had the third best performance after MA and
DEST, as it achieved the lowest Q1 and means, and there were no outliers.
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Even though all methods appeared to be unhelpful for industry s35, DCF4 achieved the lowest
means. However, no methods were suitable for the data associated with s31-plus, s35-plus, s36-plus
and s37-plus. An analysis of the original electricity data indicated that there was a big gap between
September 2009 and the other months in most industries.

From the above, it can be concluded that the forecasting effect tends to be better after adopting
decomposition; however, a DCF with only one decomposition level is sometimes not suitable when
the data are highly volatile

4.3.2. Forecasting for the Sub-Sector Electricity Demand

Based on Equation (2), the sub-sector electricity demand was forecast using the
decomposition–based CF at levels 4 and 3 using the following formula;

G4
2j = ∑

v
F4v, j = 1, · · · , 5, G3

2j = ∑
v

F3v, j = 1, · · · , 5,

where G4
2j and G3

2j were respectively the forecasts for industry s2j using the decomposition-based CF
at levels 4 and 3, and F4v and F3v were the forecasts for industry s4v and s3v using the combination
forecasting model.

Figure 7 compares the differences in the ARE output distributions for the nine sub-sector methods.
From Figure 7, it can be seen that DCF4 achieved the lowest ARE means (approximately 0.05) compared
to all other methods except for SEST, which had outliers in s22-plus, 75% of the ARE outputs from
DCF4 were lower than 10%, and DCF4 also had the lowest median, means and Q3 and no outliers
compared to all other methods except for HWA and HWM, both of which have an outlier in s23-plus.
No methods, however, were found to be suitable for s21. These results demonstrated that electricity
demand forecasting uncertainties can be reduced using decomposition.

s21-plus s22-plus

s23-plus

Figure 7. ARE distribution by ANOVA for sector.
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4.3.3. Forecasting for Sector Demand

Based on Equation (2), the sector electricity demand was forecast using a decomposition-based
CF at levels 4, 3 and 2:

G4
1j = ∑

v
F4v, j = 1, 2, G3

1j = ∑
v

F3v, j = 1, 2,

G2
1j = ∑

v
F2v, j = 1, 2,

where G4
2j, G3

2j and G1
2j were the respective forecasts for industry s1j using DCF4, DCF3, and DCF2

respectively, and F4v, F3v and F2v were the forecasts for industry s4v, s3v and s2v using the combination
forecasting model.

The ARE outputs for sector demand for the ten methods were compared using ANOVA, and the
forecasting error distributions together with the schematic box-and-whisker plot representations are
shown in Figure 8. s12 was residential electricity and was only decomposed from level 2 without DCF3
and DCF4, and s11 was decomposed from level 2 through to level 4.

s11-plus s12-plus

Figure 8. ARE distribution by ANOVA for the sectors electricity demand.

A comparison in Figure 9 clearly shows that the decomposition-based CF model had the
best forecasting performance for s11, which was decomposed from three levels; however, the
decomposition-based combination forecasting model had no advantages when forecasting s12 as
there was only one decomposition level. DCF4 had the smallest maximum error when forecasting
s11, and DCF2 had a similar inner fence to the other methods. These results demonstrated that
decomposition can adapt to the various characteristics of different data series.

Although Figure 8 indicates that HWA had the best performance for s12-plus (which was consistent
with the forecasting results in Hussain et al. [5]), for s11-plus, both HWA and HWM had outliers,
indicating that these methods were not suitable for the data set. In this case, for s11-plus, DCF4
achieved the best performance because it had the lowest Q3 and means, the narrowest inner fence,
and no high Q1 compared with all other methods except for SEST. Figure 9 also shows that DCF4 had
smaller volatility than SEST.
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s11-plus-class s12-plus-class

s11-plus-class-2 s12-plus-class-2

Figure 9. Sorted Data with Contrast Colors and Line Patterns Specified for s11 and s12.

4.3.4. Forecasting for Total Electricity Demand

Governments are most interested in total electricity demand forecasting as this allows them
to make future plans. Based on Equation (2), the electricity demand was forecast using the
decomposition–based combination method described in Section 3.5.

Figure 10 shows that when only considering the means, the CF and SEST methods achieved better
performance and the MAT and DCF3 methods had the worst performance. When considering the
outliers, the CF, DCF4 and SEST methods achieved better performance, and the HWA, HWM, and MA
methods contained outliers. For the degree of dispersion, the DCF4 achieved a lower Q1− 1.5 ∗ IQR
and a lower Q3 + 1.5 ∗ IQR, followed by SEST, CF, DCF1, DCF2. These results further supported the
conclusion that decomposition-based combination forecasting at level 4 is better at forecasting total
electricity demand.

s00-plus

Figure 10. ARE distribution of by ANOVA for total electricity demand.

At any time, actual power generation must be able to accommodate at least a 15% increase in
demand [32]. Figure 11a shows that even though the data are complex and uncertain, DCF4 performed
excellently as all the AREs were lower than 10%. Figure 11b also shows that with an increase in the



Sustainability 2019, 11, 1272 21 of 25

learning period, the decomposition-based combination forecasting model errors tended to decrease,
and the DCF4 remained more stable under volatility compared with the other methods. Furthermore,
as can be seen from the ARE outputs for all methods for s00 in Table 4, there were more minimum
AREs for the DCF4 model than for the other models. Even though they had fewer errors sometimes,
the individual methods tended to display some instability, with errors ranging from very small to
high; for example, the HWA had forecasting errors for s00 that were close to zero but as high as 20%.
By default, compared to “accuracy”, stability is particularly important for engineering practice.

Table 4. The AREs of all the methods for s00.

Month MA MAT SEST DEST HWA HWM CF DCF1 DCF2 DCF3 DCF4

25 0.0367 0.1323 0.0774 0.1246 0.2266 0.2084 0.1276 0.1255 0.1258 0.1312 0.1036
26 0.0214 0.0306 0.0223 0.0004 0.0727 0.0665 0.0124 0.0870 0.1027 0.1018 0.0837
27 0.0218 0.0805 0.0337 0.0322 0.0098 0.0067 0.0321 0.0454 0.0313 0.0343 0.0301
28 0.0697 0.1209 0.0969 0.1033 0.0370 0.0297 0.0957 0.0932 0.0926 0.0995 0.0927
29 0.0611 0.0048 0.0071 0.0001 0.0088 0.0091 0.0091 0.0075 0.0113 0.0143 0.0275
30 0.1442 0.0525 0.1115 0.0898 0.0243 0.0049 0.0672 0.0581 0.0590 0.0623 0.0595
31 0.0652 0.0540 0.0122 0.0505 0.0249 0.0323 0.0267 0.0398 0.0403 0.0371 0.0191
32 0.0383 0.0616 0.0090 0.0351 0.0629 0.0775 0.0480 0.0654 0.0556 0.0570 0.0578
33 0.0209 0.0239 0.0190 0.0098 0.0022 0.0010 0.0038 0.0253 0.0278 0.0299 0.0025
34 0.0109 0.0394 0.0269 0.0487 0.0409 0.0456 0.0193 0.0013 0.0086 0.0113 0.0203

(a) s00-plus-class (b) s00-plus-class-2

Figure 11. Sorted Data with Contrast Colors and Line Patterns Specified for s00.

4.4. Comparison Analysis with Benchmark Methods

To further substantiate the forecasting results for DCF4, a comparison analysis was conducted
with the benchmark methods ARIMA and ANN, both of which have been proven to be effective and
highly precise [1,33]. For the comparison, the total electricity demand (s00) forecasting was executed
by ARIMA and ANN.

The basic steps for ARIMA were as follows. First, the nonstationary series were transformed to
stationary series using differencing, after which p (the order of the autoregressive part) and q (the
order of the moving-average process) were determined using ACF and PACF and the optimal model
determined from the check of the white noise residuals.

Three months’ worth of electricity consumption data before the month to be predicted were taken
as the input data for the ANN model, which had three input neurons. The number of hidden neurons
were arranged to take values between 2 and 10, with the one output neuron being the consumption
forecast for the subsequent month, and the leave-one-out cross-validation method used to evaluate the
model. In addition, a rectified linear unit activation function was used as the hidden layer activation
function, a linear function was used in the output layer, and an adaptive moment estimation was
employed as the learning algorithm.

The analysis of variance results in Figure 12 indicated that there were no significant differences
between the ANN, ARIMA, and DCF4 (p = 0.7544). However, both Table 5 and Figure 13 show that
the DCF4, ARIMA, and ANN forecasting results agreed. The ARE outputs for the ANN, ARIMA, and
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DCF4 in Table 5 indicated that there were more minimum AREs for the DCF4 model than for either
the ARIMA or ANN models, and that all the DCF4 errors were lower than 0.01 and tended to decrease
with an increase in the learning period, as shown in Figure 13, all of which illustrated that the DCF4
was more stable, even when there was not enough data.

Table 5. The AREs of the ANN, ARIMA, and DCF4 for s00.

Month ANN ARIMA DCF4

25 0.029848707 0.084465171 0.103625946
26 0.015499663 0.036508881 0.083654997
27 0.124882225 0.031200544 0.030069406
28 0.055943052 0.101710947 0.092687115
29 0.010492949 0.004772692 0.027535572
30 0.086425693 0.108288557 0.059520543
31 0.052094060 0.028256914 0.019058591
32 0.105269199 0.00370881 0.057769253
33 0.043279300 0.01268148 0.002516652
34 0.047201343 0.034264153 0.020293710

T h e  S A S  S y s t e m 2 0 1 8 年  3 月 2 8 日  星 期 三  上 午 1 0 时 5 2 分 4 0 秒 3
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Figure 12. analysis of variance of ANN, ARIMA, and DCF4.

Figure 13. Sorted Data with Contrast Colors Specified for AREs by ANN, ARIMA, and DCF4.

5. Conclusions

With a focus on both prediction accuracy and stability, this paper developed a method for
total electricity demand forecasting for nonlinear, nonstationary series. Using dynamic adaptive
entropy-based weighting, a dynamic adaptive model was developed for total electricity demand
forecasting that could be dynamically adapted to various forecast models through combination and to
the various data characteristics through decomposition.
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In this work, the total electricity demand in the target society was first decomposed based on
industry categories, after which each component was forecast using a combination model that was
developed using the entropy method, from which it was found that decomposition together with
combination forecasting was able to improve forecasting accuracy.

The analyses of the individual methods in specific environments found that HWA was suitable for
most data sets due to its varied applications; however, no significant differences were found between
the forecast models based on the ANOVA. DCF4 was found to perform better than either the ARIMA
or the ANN, especially when there was only small data and no need to handle outliers. From the
schematic box-and-whisker plots and with the means, median, Q1, Q3, and outliers as the comparison
indicators, it was found that the dynamic adaptive forecasting model performed the best, was highly
accurate, had formidable forecasting ability, and would therefore be the best choice for complex,
variable data. It was also concluded that if the raw data outliers were omitted, all methods analyzed
here would perform better. It was also found that the large gap between September 2009 and the other
months for most industries significantly affected the forecasting.

Although this paper was focused on the forecasting of monthly series data sets, the methods
shown here could also be applied to quarterly data. As the proposed model performed well in
forecasting one period, it could be used to develop electricity generation plans and associated energy
policies. To further improve the methods, the forecast periods could be extended, and classical
forecasting models and modern intelligent forecasting models combined to develop combination
models for every industry; therefore, more work is necessary to fully refine the methodology.
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