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Recommender systems have become prosperous nowadays, designed to predict users’ potential interests in
items by learning embeddings. Recent developments of the Graph Neural Networks (GNNs) also provide rec-
ommender systems (RSs) with powerful backbones to learn embeddings from a user-item graph. However,
only leveraging the user-item interactions suffers from the cold-start issue due to the difficulty in data col-
lection. Hence, current endeavors propose fusing social information with user-item interactions to alleviate
it, which is the social recommendation problem. Existing work employs GNNs to aggregate both social links
and user-item interactions simultaneously. However, they all require centralized storage of the social links
and item interactions of users, which leads to privacy concerns. Additionally, according to strict privacy pro-
tection under General Data Protection Regulation, centralized data storage may not be feasible in the future,
urging a decentralized framework of social recommendation.

As a result, we design a federated learning recommender system for the social recommendation task, which
is rather challenging because of its heterogeneity, personalization, and privacy protection requirements. To
this end, we devise a novel framework Fedrated Social recommendation withGraph neural network (FeSoG).
Firstly, FeSoG adopts relational attention and aggregation to handle heterogeneity. Secondly, FeSoG infers
user embeddings using local data to retain personalization. Last but not least, the proposed model employs
pseudo-labeling techniques with item sampling to protect the privacy and enhance training. Extensive exper-
iments on three real-world datasets justify the effectiveness of FeSoG in completing social recommendation
and privacy protection. We are the first work proposing a federated learning framework for social recommen-
dation to the best of our knowledge.
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1 INTRODUCTION

The developments of Recommender Systems (RSs) [9, 28, 30, 40, 65] become prosperous nowa-
days. A well-designed recommender system is able to predict users’ potential interests in items.
The core of it is to learn user/item embeddings [29, 40, 66] by fitting historical user-item interac-
tions. Recently, the prosperity of graph neural networks (GNNs) [3, 6, 27, 38] provide powerful
frameworks to learn node embeddings, which also motivates the community to design GNN-based
RS models [9, 29, 30, 50, 51]. However, the cold-start issue [28, 66], which is associated with users
having few records, impairs the performance of learned embeddings.
To cope with this, one can leverage the social information of users [9, 25, 36, 42]. In this way,

we assume that users with social links also share similar item interests. Therefore, we could si-
multaneously aggregate social information and user-item interactions [9, 10, 56, 61] to alleviate
the cold-start issue. SocialGCN [55, 56] employs the Graph Convolutional Network (GCN) to
enhance user embedding by simulating how the recursive social diffusion process influences users.
GraphRec [9] and GraphRec+ [10] propose to model three types of aggregations upon social graph,
user-item graph, and item-item graph. Thus, it can comprehensively fuse the social links and item
transactions. ConsisRec [61] introduces the social inconsistency problem from context-level and
relation-level. It solves this problem by using a sampling-based attention mechanism.
Though being effective in fusing the social and user-item information, they all require a central-

ized storage [5, 53, 62] of both the social networks and item transaction history of users. Existing
centralized storage methods pose risks of leaking privacy-sensitive data. Additionally, due to the
strict privacy protection underGeneral Data Protection Regulation (GDPR),1 centralized data
storage may not be the first choice of online platforms in the future. Therefore, a new decentral-
ized model training framework for social recommendation is necessary. According to previous
researches in federated learning [34, 62], the user data can be stored locally in each client while
only uploading the necessary gradients for updating the model on a server. As for the federated
recommender systems [1, 4, 5, 53], the sensitive user-item interactions are stored locally and clients
only upload gradients to update user/item embeddings.
However, there is few work discussing how to design a federated learning recommender sys-

tem to complete the social recommendation task. We address the challenges of a federated social

recommender system (FSRS) as follows: (1) Heterogeneity. The current federated recommender
system stores user-item interactions locally. However, an FSRS requires both user-user and user-
item interactions, as shown in Figure 1. Therefore, we should store and fuse two types of relations
simultaneously. (2) Personalization. Each client has special item interests and social connections,
which leads to the non-iid distribution of the local data [62]. The model should be able to charac-
terize the personalized federated learning process [8] for those clients, which is rather challenging.
(3) Privacy Protection. Though user privacy data are stored locally, a federated recommender sys-
tem yet demands collecting necessary gradients [4] from clients for updating embeddings on the
server. This uploading process may lead to information leakage of original data [4]. Therefore, we
should design a protection module before uploading any information.
To this end, we devise a novel FSRS framework to address the challenges as mentioned above,

which are Fedrated Social recommendation with Graph neural network (FeSoG). Firstly,

1https://gdpr-info.eu/.
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Fig. 1. Centralized learning (a) and federated learning (b) for social recommendation. The centralized learn-

ing trains the model with all the user privacy data, i.e., both social interactions and user-item interactions,

available on the server. In contrast, federated learning locally stores user privacy data, only uploading and

requesting non-sensitive data from the server. Dash lines between users denotes social interactions, while

solid lines between users and items denotes user-item interactions.

we propose to use a local GNN to learn node embeddings. To tackle the heterogeneity of local
data, we employ a relation attention mechanism to distinguish user-user and user-item interac-
tions, which characterize the importance of neighbors by assigning different attention weights
with respect to their relations. Secondly, the local GNNs on each client are updated only based
on the data on devices. As such, moadels on devices possess personalizing training. Last but not
least, FeSoG employs pseudo-labeling technique for the on-device training of local models. This
pseudo-labeling can protect the privacy data from leakage when uploading gradients and enhance
the robustness of the training process. Extensive experiments on three datasets demonstrate the
effectiveness of FeSoG. Compared with other baselines, FeSoG achieves up to 5.26% in RMSE and
5.46% in MAE across all three datasets. In ablation studies, FeSoG also demonstrates the necessity
of each component developed in the federated learning framework. The contributions are summa-
rized as follows:

—Novel:We are the first work proposing a federated learning framework to tackle the social
recommendation problem to the best of our knowledge.

— Substantial: We address three critical challenges, i.e., heterogeneity, personalization, and
privacy protection, by proposing a new model FeSoG.

—Comprehensive: We conduct extensive experiments on three publicly available datasets
to verify the effectiveness of FeSoG. Detailed analysis and ablation study further prove the
efficacy of our proposed components in FeSoG.

In the following sections, we first introduce the related work in Section 2. Then, we present some
preliminaries in Section 3, including both the definition and formulation. The detailed descriptions
of our proposed FeSoGmodel are in Section 4. Experiments are discussed in Section 5. Finally, we
conclude this article and open up possible future work in Section 6.
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2 RELATEDWORK

This section presents three relevant areas to this article: GNN for recommendation, social recom-
mendation, and federated learning for recommendation.

2.1 Graph Neural Network for Recommendation

The recent developments of Graph Neural Networks (GNNs) [15, 21, 27, 49] motivate the com-
munity to propose a GNN-based recommender system. The intuition of a GNN model is to aggre-
gate neighbors to recursively learn node embeddings [37]. GC-MC [2] first employs the GCN [21]
architecture to complete the user-item rating matrix. It uses the GCN as an encoder to train
user/item embeddings, which are input to a fully connected neural network to predict the ratings.
PinSAGE [63] proposes to use the GraphSAGE [15] backbone to learn item embeddings over an
attributed item graph. It first samples fixed-size nodes from multi-hop neighbors and then uses ag-
gregators to aggregate those sampled nodes to learn the embeddings for center nodes. NGCF [51]
is proposed later to explicitly model the collaborative signals upon user-item interaction graph
by applying the GNN model. DGCF [29] observes the oscillation problem when applying GNN
on the bipartite graph and solves it with cross-hop propagation layers. BasConv [30] is a pioneer
work that investigates using GNN to complete basket recommendation. These works prove the
efficacy of using the GNN framework to learn embeddings in a recommender system. GNN-based
models are advantageous as their aggregation can model high-order structural information crucial
for learning user/item embeddings from interactions. This article also adopts the GNN model to
embed the local graphs. We employ the graph attention networks [48] as a backbone.

2.2 Social Recommendation

The social recommendation aims at relieving the data sparsity and cold start problem by induc-
ing information of social links between users [32, 52, 61]. Social recommendation methods can
be generally categorized as social matrix factorization (MF)-based methods and GNN- based
methods. Existing social MF approaches either jointly factorize the rating and social relationship
matrices or regularize the user/item embeddings with constraints of social connections. SoRec [32]
co-factorizes the user ratingmatrix and social linkmatrix. SocialMF [18] adds a regularization term
to constrain the difference between the user’s taste and his/her trusted friends’ average weighted
taste. SoReg [33] adds a regularization term to directly minimize the difference in the user latent
feature between two trusted users, which can prevent the counteraction of the latent feature
of one’s trusted friends. HGMF [52] introduces a hierarchical group matrix factorization

(HGMF) technique to learn the user-group feature in a social network for recommendation. Unlike
MFmethods, GNNmethods infer node embeddings directly from graphs and demonstrate the effec-
tiveness from recent social recommendation work [24, 57, 58]. GraphRec [9] and GraphRec+ [10]
use graph attention networks to learn user and item embeddings for recommendation.
Reference [44] utilizes dynamic graph attention networks to capture the dynamic user’s interest
from the social dimension. CUNE [64] assumes that users hold implicit social links from each other.
CUNE extracts semantic and reliable social information by graph embedding method. DiffNet [55]
and DiffNet++ [54] model the social influence diffusion process to enhance the social recommen-
dation. ConsisRec [61] examines the inconsistency problems in the social recommendation and
introduces a consistent neighbor sampling module in the GNNmodel. The above studies show the
effectiveness of incorporating social information into the recommender system.

2.3 Federated Learning for Recommender System

Google proposed Federated learning in 2016 [34]. It calls for data privacy-preserving solu-
tions in machine learning models [7], with the raised privacy concerns of existing centralized
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training-based models. The fundamental of federated learning is to design a decentralized train-
ing framework, which distributes the data to clients rather than storing it in a server [22, 34]. User
transactions are sensitive information and probably cause identity information leakage if used for
malicious purposes. Several recent works [1, 4, 53] developed federated recommender systems for
user information protection while still preserving good enough personalization. Federated Col-

laborative Filtering (FCF) [1] and FedMF [4] are two pioneering works investigating a novel
federated learning framework to learn the user/item embeddings for a recommender system. Both
works develop the federated learning on the top of factorization [23] of the user-item rating matrix.
To achieve federated learning, they propose that the user’s ratings should be stored locally. The
user embeddings can be trained locally, and the server only retains the item embeddings. This train-
ing framework leads to protecting the privacy data, as there is no transfer of users’ interactions.
Ribero et al. [41] argues that the model updates sent to the server may contain sufficient infor-
mation to uncover raw data, which leaves privacy concerns. They propose to use the differential
privacy [35] to limit the exposure of the data in a federated recommender system. FED-MVMF [11]
extends theMulti-View Matrix Factorization (MVMF) [43] to a federated learning framework.
It simultaneously factorizes both feature matrices and interaction matrices. A-FRS [5] proposes a
robust federated recommender system against the poisoning attacks of clients. It employs an item
similarity model [19] in learning the user/item embeddings. FedGNN [53] is the most recent work
that combines GNN with a federated recommender system, which is also the most relevant work
to our article. However, FedGNN fails to solve social recommendations, and the clients’ models
are not personalized [8]. We present a comparison of a set of representative social recommender
systems and federated learning methods in Table 1.

3 PRELIMINARY

In this section, we present the preliminaries and definitions of essential concepts. The glossary of
necessary notations are summarized in Table 2.

3.1 Definitions

The target in a social recommendation is to predict the users’ ratings to items, when given social
interactions and user-item interactions. Denote theU = {u1,u2, . . . ,uN } and T = {t1, t2, . . . , tM }
as the set of users and item, respectively. N andM are the numbers of users and items, respectively.
The social recommendation is to complete the ratings of users to items given both rating matrix
R ∈ RN×M and the social connection matrix S ∈ {0, 1}N×N . We denote the user n’s rating value to
an itemm as Rnm . Similarly, the connection between an user n and user p is denoted as Snp . In a
federated learning scenario, the data of each user are stored locally. Hence, both the rating matrix
and social connection matrix are not available. The data of each user are stored in the local client,
which is defined as

Definition 1 (Client). A client c is defined as a local device storing the rating data and the social
data. Each client cn is associated with a user n, whose rating data and social data are Rn · and Sn ·,
respectively.

Definition 2 (Server). A server is defined as a central device managing the coordination of mul-
tiple clients in training a model. It does not exchange raw data from clients but only requests
necessary messages for updating the model.

In this article, we assume clients and server to be honest-but-curious [20]. In other words, they
provide correct information and cannot tamper with the training process. The FSRS is to com-
plete the rating matrix given its partially complete rating data and social data, which is defined as
follows:

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 55. Publication date: August 2022.
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Table 1. Comparison of Representative Models with Respect to Social Information, Multi-relation, GNN,

Rating Protection, Interaction Protection, and Data Storage

Social Information Multi-relation Graph Neural Network Data Storage
RSTE [31] � × × centralized
TrustWalker [17] � × × centralized
SoRec [32] � × × centralized
SoReg [33] � × × centralized
SocialMF [18] � × × centralized
TrustSVD [14] � × × centralized
CUNE [64] � � × centralized
GCMC+SN [2] � × � centralized
DANSER [58] � � � centralized
GraphRec [9] � � � centralized
ConsisRec [61] � � � centralized
FedMF [4] × × × local
FedGNN [53] × × � local
FeSoG � � � local

Definition 3 (FSRS). For n clients and a server, given the partially observed rating data and social
data as rn = [rn1, rn2, . . . , rnk ] and sn = [sn1, sn2, . . . , snp] of each client cn , respectively, where
n,p ∈ {1, 2, . . . ,N } and k ∈ {1, 2, . . . ,M }, an FSRS can predict the unobserved rating data of the
client cn without access to the raw data in each client.

Note that both the rating and social data are stored locally in the corresponding clients and never
be uploaded to the server. Multiple clients collaboratively train an FSRS under the orchestration
of the center server [20].

3.2 Formulation

Our FSRS is designed by formulating the data on clients as multiple local graphs, which is illus-
trated in Figure 1. The local graph contains the first order neighbors of the client user, including
item ratings and social neighbors. We denote the local graph for client cn as Gn , which consists
of both user nodes and item nodes. Gn is constructed from partially observed privacy data. More-
over, there are two type of edges in Gn , i.e., the user-item edges with rating value as attributes and
the user-user edges denoting the social interactions. For each client cn , we denotes its rated items

as T (n) = {t (n)1 , t
(n)
2 , . . . , t

(n)
k
} and social neighbors as U (n) = {u (n)

1 ,u
(n)
2 , . . . ,u

(n)
p }. The FSRS can

predict the rating value of an unobserved item t∗ ∈ T \T (n) . In other words, the FSRS can predict
the attribute value of the local graph for the edge between the user ui and a new item t∗. Thus, the
problem can be formulated as follows:

Definition 4 (Problem Definition). Given the local graphs {Gn |Nn=1}, can we collaboratively train
a model to predict the attribute value for an unobserved edges (un , t∗) without access to the raw
data of any local graphs?

We specify the social recommendation problem to be a link prediction problem. It indicates
that we should learn graph embeddings from local graphs to preserve the structural information.
Additionally, it is necessary to tackle the heterogeneity [16, 30, 60] of those local graphs.
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Table 2. Glossary of Notations

Symbol Definition
U ;T user set; item set
R; S rating matrix; social connection matrix

N ;M total number of users; total number of items
ci client n, which is associated with user n

rn ; sn the local observed rating and social data of
client cn

T (n) ;U (n) the local observed rated items; the social
connected neighbors of client cn

Eu (eu );Et (et ) embedding for users, embedding for items
e∗un the local inference embedding of user n

a; b; c attention layer vector for user-user
interaction; for item-item interaction; for
relation vector

W1;W2 linear mapping matrix for user-user
interaction; for item-item interaction

αup , βuk attention weights for neighbor users; for
neighbor items

hu ; ht hidden embeddings for neighbor users;
hidden embeddings for neighbor items

γu ;γt attention weight for aggregating social
relation; for aggregating user-item relation

vu ; vt social relation vector; user-item relation
vector

R; R̂ ground truth rating score; predicted rating
score

Lu ; L̃u loss for client u; protected loss for client u

g(n) ; g(n)e ; g(n)m the gradients for client n; the embedding
gradients; the model gradients

δ ; λ the parameters for LDP

4 PROPOSED FRAMEWORK

In this section, we illustrate the FSRS framework of our proposed FeSoG. It has three crucial mod-
ules: embeddings layer, local GNNs, and gradient protector. The proposed framework is in Figure 3.

4.1 Embeddings

Node embeddings are crucial components in preserving graph structural information [30, 51, 61].
The FeSoG has embedding layers for user and item nodes. We denote the embeddings for users
and items as Eu ∈ Rd×N and Et ∈ Rd×N , respectively, which are both maintained by the server.
d ∈ N+ is the dimension size for embeddings. Clients request the embeddings tables from the server.
Then, they learn a local user/item embeddings and a local GNN model by using their interaction
data. Those embeddings will be updated on the server by aggregating the gradients uploaded from
clients.
A client downloads the complete embedding tables and uses the user/item ids in interaction

records to infer the corresponding embeddings. To be more specific, for a client n, which has rated

items as T (n) = {t (n)
k
|K
k=1} and social neighbors asU

(n) = {u (n)
p |Pp=1}, its rated item embeddings are

{e(n)tk
|K
k=1} and social neighbor embeddings are {e(n)up |Pp=1}, where e

(n)
tk
, e

(n)
up ∈ Rd and K , P denote the
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Fig. 2. (a): The calculation of the attention weights between two embeddings, which consists of linear map-

ping matrixW, concatenation of two embeddings, attention layer a, non-linear activation, and softmax func-

tion. (b): The local GNN learns the embedding of u1 by aggregating the neighboring embeddings.

total number of item neighbors and user neighbors, respectively. Those embeddings are input the
local GNN model to learn client user embedding and predict item scores.

4.2 Local Graph Neural Network

The local GNN module is the major component in FeSoG to learn node embeddings and make a
prediction. It consists of heterogeneous graph attention layers, relational graph aggregation layers,
and rating prediction layers.

4.2.1 Relational Graph Attention. In general, we have no constraints on the local GNNs. There
can be arbitrary GNN models, such as GCN [21], GAT [49], and GraphSAGE [15], and so on. This
article focuses on proposing a new FSRS framework. We directly adopt the GAT layer for learning
node embedding and leave other GNN layers for future investigation. The GAT layer is designed
by employing the self-attention mechanism [48]. To learn the node embedding ofun , we aggregate
neighbor embeddings of un . However, since neighbors contribute unequally to the center node un ,
we should first learn a weight for each neighbor by employing an attention layer. Specifically, for
a social pair (un ,up ), their attention scores are formulated as

onp = Attention(W1eun ,W1eup ), (1)

where onp is a scalar denoting the attention weight,W1 ∈ Rd×d is a linear mapping matrix, and At-
tention is the attention layer. We define the attention layer as a single-layer feed-forward neural
network. It is parameterized with a weight vector a ∈ R2d and employs a LeakyReLU activa-
tion [48], which is formulated as

onp = LeakyReLU
(
a�

[
W1eun ‖W1eup

] )
, (2)

where a� denotes the transpose of the attention layer parameter and ‖ denotes the concatenation
operation of two vectors. An illustration of the attention weight is in Figure 2(a). The attention
weight should be calculated for all the neighbors of the center node u, which forms a probability
distribution by employing the softmax function:

αnp = softmaxp (onp ) =
exp(onp )∑P
i=1 exp (oni )

, (3)

where αnp is the final attention weights, exp denotes the exponential function. Note that α is
calculated as the attention weights for user neighbors. We should learn attention weights for user-
item pair (un , ik ) in a similar way, which employs another linear mapping as in Equation (1) and
another attention parameters as in Equation (4), as following:

vnk = LeakyReLU
(
b�

[
W2eun ‖W2eik

] )
, (4)
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where W2 ∈ Rd×d is the mapping matrix and b ∈ R2d is the weights for the user-item interaction
attention layer. By employing the softmax to all the itemneighbors, we derive the attentionweights
for item neighbors as

βnk = softmaxk (vnk ) =
exp (vni )∑K
i=1 exp (vni )

, (5)

where βnk denotes the attention weights for items normalized over all neighboring items, next, we
present the relational aggregation for both user neighbors and item neighbors.

4.2.2 Relational Graph Aggregation. Inferring the center user embeddings requires aggregating
both neighbor user nodes and neighbor item nodes with their associated attention weights, which
are formulated as follows:

h
(n)
u =

P∑
p=1

αnpWheup , h
(n)
t =

K∑
k=1

βnkWhetk , (6)

where Wh ∈ Rd×d is the linear mapping weight matrix, and h
(n)
u , h

(n)
t ∈ Rd denote the hidden

embeddings for aggregating user neighbors and item neighbors, respectively. The general aggre-
gation process is illustrated in Figure 2(b). Intuitively, we should aggregate hidden embeddings
and the center node embedding to infer the embedding of un . However, social relation, user-item
interactions and center node embedding are not equally contributed to the learning process [61].
We should also handle the heterogeneity during the aggregation step. Therefore, we propose to
use three relation vectors to preserve their semantics, i.e., vu , vt , vs ∈ Rd preserving the social
semantics, user-item semantics and center node itself semantics respectively. To be more specific,
we concatenate hidden embeddings with their relation vectors and employing the self-attention
mechanism to learn the weights for aggregation

γu =
exp
(
c�

[
h
(n)
u ‖vu

] )
exp
(
c�

[
h
(n)
u ‖vu

] )
+ exp

(
c�

[
h
(n)
t ‖vt

] )
+ exp

(
c�

[
h
(n)
s ‖vs

] ) , (7)

γt =
exp
(
c�

[
h
(n)
t ‖vt

] )
exp
(
c�

[
h
(n)
u ‖vu

] )
+ exp

(
c�

[
h
(n)
t ‖vt

] )
+ exp

(
c�

[
h
(n)
s ‖vs

] ) , (8)

γs =
exp
(
c�

[
h
(n)
s ‖vs

] )
exp
(
c�

[
h
(n)
u ‖vu

] )
+ exp

(
c�

[
h
(n)
t ‖vt

] )
+ exp

(
c�

[
h
(n)
s ‖vs

] ) , (9)

where γu , γt , and γs are the attention weights for hidden user neighbors embedding, hidden item
neighbor embedding, and center node itself embedding, respectively. c ∈ R2d is the weight vector
for the attention layer. Given that, we infer the node embeddings of un as

e∗un = γseun + γuh
(n)
u + γth

(n)
t , (10)

where e∗un is the local user embedding for prediction. The aggregation is illustrated in Figure 3.
As such, local clients preserve their user embeddings, which tackles the personalization problem.
Next, we will use the learned embeddings and downloaded item embeddings to make a prediction.
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Fig. 3. The framework of FeSoG. For simplicity and without loss of generality, we present a two-client sce-

nario. In each client, we use the local GAT layer to infer node embeddings and adopt the attention layer to

aggregate social neighbors and item neighbors. Then, we sample a set of pseudo items bundled with local

data to calculate the loss and gradients. Both the embedding gradients and model gradients are uploaded

to the server for aggregation after LDP operation.

4.2.3 Prediction. To predict the local item ratings, we adopt the dot-product between the in-
ferred user embedding and item embeddings. For a user u and an item t with embedding e∗u and
et , respectively, the rating Rut is

R̂ut = e∗u · et , (11)

where · denotes the dot-product operation. We use the local user-item rating values to optimize
the prediction by employing theRootMean Squared Error (RMSE) between the predicted score
R̂ut and the ground-truth rating score Rut :

Lu =

√∑
t ∈T (u ) (Rut − R̂ut )2

|T (u ) |
, (12)

where T (u ) denotes the rated items of user u, and Lu is the local loss for user u. Recall that each
user is associated with a client. This loss function will be used to calculate the gradient for clients.
Then, the gradients are collected from multiple clients to the server for further updates. However,
directly uploading gradients leads the user-item interaction data to be vulnerable [4, 53]. It urges
us to design a privacy protection mechanism regarding the gradients, which will be introduced
next.

4.3 Privacy Protection

This section introduces two techniques to protect the local user-item interaction data when up-
loading the gradients: dynamic Local Differential Privacy (LDP) and pseudo-item labeling.
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4.3.1 Local Differential Privacy. According to FedMF [4], the user’s rating information can be
inferred if given the gradients of a user uploaded in two continuous steps. Though our case is more
complicated than in FedMF, it is still problematic if directly optimizing the local data and uploading
the gradients.Moreover, for embedding gradients, only itemswith ratings in a local client have non-
zero gradients to upload to the server. FedMF [4] proposes using encryption for the gradients so
that the server cannot inverse the encoding process. However, it requires generating the public key
and secret key and introducing additional computation for encryption. Additionally, to solve the
zero-gradient for non-rated items, FedGNN [53] proposes to sample pseudo-interacted items and
add Gaussian noise with the same mean and variance as the ground-truth items to their gradients.
Another technique used broadly is the LDPmodule [7, 39, 41]. It adopts clipping the local gradients
based on their L∞-norm with a threshold δ and applies a LDP module with zero-mean Laplacian
noise to the unified gradients to achieve privacy protection.
To be more specific, we instantiate the item embedding gradients, user embedding gradients,

and model gradients from client n as g(n)t , g(n)u , and g
(n)
m , respectively. Combining them gives the

gradients as g(n) = {g(n)t , g
(n)
u , g

(n)
m } = ∂Lu

∂Θ , where Θ denotes all trainable parameters. Then, the
LDP is formulated as

g̃(n) = clip(g(n),δ ) + Laplacian(0, λ), (13)

where g̃(n) is the randomized gradients, clip(x ,δ ) denotes limiting x with the threshold δ , and
Laplacian(0, λ) is the Laplacian noise with 0 mean and λ strength. However, a constant noise
strength is inappropriate when dealing with gradients at different magnitudes. The gradient mag-
nitude of different parameters varies during training. Hence, we propose to add dynamic noise
based on the gradient, which is formulated as follows:

g̃(n) = clip(g(n),δ ) + Laplacian(0, λ ·mean(g(n) )), (14)

4.3.2 Pseudo-Item Labeling. Based on existing work, we propose a new privacy protectionmod-
ule, which is advantageous as it can protect the training gradients and enhance the model with
more robustness. In a local client, before calculating the training loss, we first sampleq items not in

the neighbor items, which are the pseudo-items in Figure 3, denoting as T̃ (u ) = {t̃ (u )1 , t̃
(u )
2 , . . . , t̃

(u )
q }.

Then, we use the local model to predict the ratings for these pseudo items. The predicted ratings
are rounded to be the pseudo ratings. Hence, the loss in Equation (12) is changed to

L̃u =

√∑
t ∈T (u )∪T̃ (u ) (Rut − R̂ut )2

|T (u ) |
. (15)

Note that compared with Equations (12) and (15) is calculated from both the true interacted items
and pseudo items. The ground-truth ratings for pseudo items are the rounded predicted score.
The difference between the predicted score and the rounded one contributes to the gradients for
those pseudo items. Here, we assume that Rut ∈ N, while R̂ut ∈ R. The gradients derived from
Equation (15) contain both ground-truth rating information and the pseudo item rating informa-
tion, which prevents the data leakage problem. Additionally, the pseudo labels of items provide
additional rating information, which can alleviate the cold-start issue of the data. Intuitively, this
technique works as a data augmentation method [26, 28, 59]. We sample those pseudo items and
view the difference between rounded ratings with a predicted rating as the randomness, which
enhances the robustness of the local model.

4.4 Optimization

In this section, we first present the optimization process of the FeSoG framework before we present
the pseudo-code of the algorithm.
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4.4.1 Gradient Collection for Optimization. The server in FeSoG collects the gradients uploaded
from clients to update both the model parameters and embeddings, which collaboratively optimize
the model. Recall that the gradient from client n is g̃(n) and the parameter is Θ, which includes Θm ,
Θt , andΘu indicating model parameters, item embedding, and user embedding, separately. In each
round, the server builds a connection with a batch (e.g., 128) of clients, denoted asN . It first sends
the current model parameters Θm and embeddings Θe to those clients. Then, it aggregates local
gradients from those clients as follows:

ḡm =

∑
n∈N |Rn | · g̃

(n)
m∑

n∈N |Rn |
, ḡt =

∑
n∈N |Rn | · g̃

(n)
t∑

n∈N ��Rt
n
�� , ḡu =

∑
n∈N |Rn | · g̃

(n)
u∑

n∈N |Run |
, (16)

where Rn is the total number interaction for calculating the gradients, including both the real in-
teractions and pseudo interactions. Rt

n and Run indicate interactions involving item t and user u,
separately. Intuitively, ḡm , ḡt , ḡu are weighted average of the gradients from clients. After aggre-
gation, the server updates the parameter Θ with gradient descent as

Θ∗ = Θ − η · ḡ, (17)

where η is the learning rate. This learning process is operated multiple rounds until convergence.

4.4.2 Algorithm. The pseudo-code of the algorithm of FeSoG is presented in Algorithm 1. The
inputs are consist of the training hyper-parameters such as the embedding size d and learning η.
Additionally, the client data should also be given, i.e., the clients local graphs {Gn |Nn=1}. Though the
target is to predict item ratings, we output the parameters Θ and the local inferred embeddings
{e∗un |

N
n=1}, which is sufficient for clients to predict ratings. In the algorithm, the line 2 to the line 6

ALGORITHM 1: FeSoG (Federated Social Recommendation with Graph Neural Network)

Input : Embedding Size, learning rate: d , η
Total number of clients, items: N ,M,T
The number of pseudo items: p
LDP parameter: δ , λ
Clients local graph: {Gn |Nn=1}

Output :Model parameters and embeddings Θ; Local client embeddings {e∗un |
N
n=1}

1 Initializing Θ;

2 while not converge do

3 sampling a fractions of clients N ; for n ∈ N do

4 g(n) , |Rn | = ClientUpdate(n, Θ); // collecting gradients from clients

5 ḡ(n) ← Equation (16); // averaging gradients from clients

6 Θ = Θ − η · ḡ(n) ; // updating parameters

7 Function ClientUpdate(n, Θ):
8 downloading Θ from server;

9 e∗un ← Equation (10); // local user embedding inference

10 sampling p pseudo items;

11 calculating the ratings of those pseudo items using Equation (11); // pseudo-labelling

12 L̃n ← Equation (15);

13 g(n) =
∂L̃u
∂Θ ; // computing the gradients

14 g̃(n) ← Equation (13); // LDP for gradients

15 return g̃(n) , p + |T (u ) |; // return gradients and the number of interactions
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Table 3. Statistics of Datasets

Dataset Ciao Epinions Filmtrust
Users 7,317 18,069 874
Items 104,975 261,246 1,957
# of ratings 283,320 762,938 18,662
Rating density 0.0369% 0.0162% 1.0911%
# of social connections 111,781 355,530 1,853
Social connection density 0.2088% 0.1089% 0.2426%

is the loop operated on the server, which sends parameters to clients and collects their gradients
for updating. The function ClientUpdate() is the operation on local devices. It downloads the pa-
rameters to infer the local user embeddings (line 8). Then, the pseudo items are sampled (line 10).
Pseudo-labeling and LDP are combined (lines 10–14) to protect the gradients from privacy leak-
age. This function returns the gradients and the number of interactions (line 15) for the server to
collect.

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness of FeSoG. We will answer
the following Research Questions (RQs):

—RQ1: Does FeSoG outperform existing methods in social recommendation?
—RQ2: What is the impact of the hyper-parameters in FeSoG?
—RQ3: Are those components in FeSoG necessary?

5.1 Experimental Setup

5.1.1 Datasets. In this article, we adopt three commonly used social recommendation datasets
to conduct experimental analyses, which are Ciao, Epinions [45–47], and Filmtrust [13]. Ciao and
Epinions2 [45–47] are crawled from shopping website. Both datasets contain user rating scores
on items and trust links between users as social relations. Each user can give an integer score in
{1, 2, 3, 4, 5} to rate an item, where 1 indicates least like, while 5 represents most. Filmtrust3 [13]
is built from online film rating website and the trust relationship between users. The rating scale
ranges from 1 to 8. Social relations are also the trust links between users in these datasets. Data
statistics are shown in Table 3. In our FSRS scenario, each user is treated as a local client, and the
user’s interactions are local privacy data on the device. The global graph information is transferred
from user embeddings.

5.1.2 Baselines. We adopt three types of baselines for comparison: traditional MF -based meth-
ods for social recommendation, recent GNN-based methods for social recommendation, and feder-
ated learning frameworks. MF-based and GNN-based methods are based on centralized learning,
which is unable to protect user privacy. Federated learning methods are not able to handle the
fusion of local social information and rating information.
MF-based methods

— SoRec [32]: It co-factorizes user-item rating matrix and user-user social matrix.
— SoReg [33]: It develops a social regularization with social links to regularize on MF.
— SocialMF [18]: Compared with SoReg, social MF also considers social trust propagation.

2https://www.cse.msu.edu/~tangjili/datasetcode/truststudy.html.
3https://guoguibing.github.io/librec/datasets.html.
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—CUNE [64]: Collaborative user network embedding assumes users hold implicit social links
from each other, and it tries to extract semantic and reliable social information by graph
embedding method.

GNN-based methods

—GCMC+SN [2]: GCMC is a GNN-based method. User nodes are initialized as vectors learned
by node2vec [12] from the social graph to obtain social information. The dense representa-
tion learned upon the social graph can include more information than the random initialized
feature.

— GraphRec [9]: Graph recommendation uses GNN to learn user embedding and item embed-
ding from their neighbors and uses several fully connected layers as the rating predictor.

— ConsisRec [61]: It is the state-of-the-art (SotA) method in social recommendation. Consis-
Rec modifies GNN to mitigate the inconsistency problems in social recommendation.

Federated learning methods

— FedMF [4]: It separates theMF computation to different users and uses an encryptionmethod
to avoid information leakage.

— FedGNN [53]: Federated GNN is the SotA federated recommendation method. It adopts local
differential privacy methods to protect user’s interaction with items.

5.1.3 EvaluationMetrics. To evaluate the performance and compare, we adoptMeanAbsolute

Error (MAE) and RMSE to measure the model performance because they are the most commonly
used metrics in social recommendation. Smaller values of both two metrics indicate better perfor-
mance in the test data. The two metrics are calculated as follows:

MAE =

∑N
n=1
∑

t ∈T (n ) |Rnt − R̂nt |∑N
n=1 |T (n) |

, (18)

RMSE =

√∑N
n=1
∑

t ∈T (n ) (Rnt − R̂nt )2∑N
n=1 |T (n) |

, (19)

where Rnt and R̂nt are the true rating value and predicted rating value of user n for item t , respec-
tively. N is the total number of users for testing. T (n) denotes the rated items for user n. Again,
the evaluation is conducted on devices locally since the server has no access to the local privacy
data. The lower MAE and RMSR both indicate better performance.

5.1.4 Experimental Setups. The ratings in each dataset are randomly split into training set (60%),
validation set (20%), and test set (20%). Hyper-parameters are tuned based on the validation perfor-
mance. Then, we report the final performance on the test dataset. In all experiments, we initialize
the parameters with standard Gaussian distribution. For the LDP technique used in FeSoG, the gra-
dient clipping threshold is set to 0.3, and the strength of Laplacian noise is set to 0.1. Other hyper-
parameters are tuned based on grid searching. The number of pseudo interacted itemsp is searched
in {10, 50, 100, 500, 1000}. Embedding size d is tuned from {4, 8, 16, 32, 64}. User batch size in each
training round is searched in {16, 32, 64, 128, 256}. Learning rate η is searched in {0.1, 0.05, 0.01}.
Training is stopped if RMSE on the validation set does not improve for five successive validations.

5.2 Overall Comparison (RQ1)

In this section, we conduct the overall comparison of different models. The experimental results
are shown in Table 4, which are categorized into three groups.We have the following observations:
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Table 4. Experiment Results Compared with Baseline Methods

Method
Ciao Epinions Filmtrust

RMSE MAE RMSE MAE RMSE MAE
SoRec 1.2024 0.8693 1.3389 1.0618 1.8094 1.4529
SoReg 1.0066 0.7595 1.0751 0.8309 1.7950 1.4413
SocialMF 1.0013 0.7535 1.0706 0.8264 1.8077 1.4557
GCMC+SN 1.0301 0.7970 1.1070 0.8480 1.8025 1.4325
GraphRec 1.0040 0.7591 1.0799 0.8219 1.6775 1.3194
CUNE 1.0002 0.7591 1.0681 0.8284 1.7675 1.4178
ConsisRec 0.9722 0.7394 1.0495 0.8046 1.7148 1.3093
FedMF 2.4216 2.0792 2.0685 1.5254 2.795 2.1713
FedGNN 2.02 1.58 1.8346 1.4238 2.13 1.65
FeSoG 1.9136 1.4937 1.7969 1.3847 2.0942 1.5855

Improvement 5.26% 5.46% 2.05% 2.74% 1.68% 3.9%
The best federated learning results are in bold, and the best results for non-federated
learning methods are underlined. Improvement indicates the percent that FeSoG
improves against the second-best federated learning result.

— FeSoG significantly outperforms the SOTA federated recommender systems in all datasets.
Comparedwith FedGNN, FeSoG achieves on average 2.99% and 4.03% relative improvements
on RMSE and MAE, respectively. Several advantages of FeSoG support its superiority: (1)
social information helps the recommendation, which the improvement can demonstrate over
FedMF; (2) the relational graph attention and aggregation can effectively integrate both user-
item interactions and social information; and (3) the local pseudo-item sampling technique
enhances the performance.

— The GNN-based models perform better than those MF-based models. ConsisRec is the SOTA-
GNN model that employs relation attention and consistent neighbor aggregation, which
leads to its best performance. Compared with SocialMF, which is the best MF-based method,
ConsisRec achieves in average 3.47% and 5.27% relative improvements in RMSE and MAE,
respectively. GNN-based models are better as they can directly model structure information
and simultaneously aggregate social and user-item interactions. Between the two federated
learning baselines, FedGNN also significantly outperforms FedMF, which again supports the
claims that GNN-based models are better than MF-based methods. FeSoG is also based on
GNN aggregation. Its local GNN aggregation employs relation attention, which leads to its
better performance against FedGNN.

— Federated learning impairs the performance compared with centralized learning. Even a sim-
ple GCMC+SNmodel is better than the FedGNNmodel. There are two reasons: On one hand,
to achieve privacy protection, the federated learning framework has no access to the local
data, limiting its capacity to model the global structures. According to [9, 27], the core of
graph embedding is to aggregate high-order neighbors and select informative contexts. On
the other hand, the local gradients are protected by adding random noise. Though it theoret-
ically will not hurt the performance in expectation, it still prevents the server from receiving
qualitative gradients from clients. We should find a tradeoff between performance and pri-
vacy protection. This observation also brings opportunities for federated learning research.

5.3 Sensitivity Analysis (RQ2)

In this section, we emphasize on analyzing the impacts of those hyper-parameters involving in
FeSoG and some other baselines. We include user batch size |N | as in the line 3 of Algorithm 1,
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Fig. 4. RMSE performance with respect to user batch size on three datasets.

Fig. 5. MAE performance with respect to user batch size on three datasets.

embedding size d , learning rate η, the number of pseudo items p, local differential privacy param-
eter δ , and λ.

5.3.1 User Batch Size. In this section, we analyze the impact of user batch size. Intuitively,
choosing a small user batch size increases the communication rounds for the server to train a
model. However, it is unclear how it affects the prediction performance. We report the perfor-
mance of FedGNN and FeSoG with respect to RMSE and MAE across three datasets, which is
illustrated in Figures 4 and 5, respectively. We have the following observations:

— FeSoG performs better than FedGNN. On all three datasets, the RMSE of FeSoG is consis-
tently lower than FedGNN, which results from its powerful embedding ability of relational
local GNN.

— The performance of FeSoG becomes better with the increase of user batch size across
datasets. With a larger user batch size, the server can obtain a more accurate global infor-
mation estimation, which leads to a better performance. However, in practice, aggregating
more users at each training step would lead to more computational cost and more time to
converge.

5.3.2 Number of Pseudo Items. Pseudo items are sampled to protect the gradients from privacy
leakage. Sampling more pseudo items requires more computational cost as more ratings should be
predicted. However, it is unclear howmany samples should be selected to achieve satisfying results.
Hence, we conduct experiments on three datasets to study the impacts of the number of sampled
pseudo items. We also compare FedGNN, which samples a set of negative items and assigns them
with random gradients. The influence of the number of pseudo items on three datasets with respect
to RMSE and MAE is reported in Figures 6 and 7. Besides the performance value, we also present
the computational cost with respect to the number of sampled pseudo items.We have the following
observations:
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Fig. 6. RMSE performance with respect to different pseudo item numbers on three datasets.

Fig. 7. MAE performance with respect to different pseudo item numbers on three datasets.

— FeSoG yields better performance compared with FedGNN. On Ciao and Epinions datasets,
the performance of FeSoG and FedGNN gets worse with the increase of pseudo items. How-
ever, the value of FeSoG is much lower than FedGNN. It suggests that our pseudo item sam-
pling and the pseudo labeling techniques are robust. Therefore, we can conclude that the
pseudo item sampling in FeSoG can protect privacy data and enhance the training process.

— If increasing the number of pseudo items, the error value all increases for both FedGNN
and FeSoG on Ciao and Epinions datasets, which results from more noise caused by pseudo
items. However, on the Filmtrust dataset, the error value of FedGNN first increases and
then drops. This is because FedGNN generates gradients of pseudo items from the same
Gaussian distribution, and at the same time Filmtrust dataset only has 1,957 items. So when
sampling more than 500 pseudo items, the gradient of pseudo items from different users
would counteract with each other to reduce noise impact. FeSoG generates gradients of
pseudo items by user-specific labeling, which does not have this characteristic.

—We should find a tradeoff between pseudo-item sampling and model performance. As illus-
trated in Figures 6 and 7, if increasing the number of pseudo items, the extra computational
cost increases linearly and the server would be harder to infer the true interacted items. At
the same time, prediction accuracywould becomeworse. So we should find a suitable pseudo
item number to balance privacy protection andmodel performance. For example, 100 pseudo
items for Ciao dataset would be an appropriate setting because the model performance does
not deteriorate much when the number of pseudo items is lower than 100.

5.3.3 Embedding Size. This section studies the performance with respect to the embedding size.
The values of RMSE and MAE on three datasets are reported in Figures 8 and 9, respectively. For
comparison, we also select two representative baselines, which are FedGNN and FedMF. We have
the following observations:
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Fig. 8. RMSE performance with respect to different embedding sizes d on three datasets.

Fig. 9. MAE performance with respect to different embedding sizes d on three datasets.

—The proposed FeSoG consistently outperforms other federated recommender system meth-
ods across all embedding sizes. This observation suggests that FeSoG can learn informative
structures from local graphs. Compared with FedMF, FedGNN demonstrates a much better
performance, which justifies the necessity to employ GNN for graph embedding.

— FeSoG has lower fluctuations as embedding sizes change compared with the other two base-
lines. It indicates that FeSoG is more robust than FedGNN on different embedding sizes,
demonstrating the effectiveness of using pseudo-item protection to enhance the training.

— Furthermore, suitable embedding sizes are crucial for different datasets to achieve satisfying
performance. All federated learning methods follow the same trend and obtain the best per-
formance in either d = 16 or d = 32. With a smaller embedding size (e.g., d = 4), the model
has insufficient representation ability. However, with large embedding sizes (e.g., d = 64), it
may cause the overfitting issue due to limited data.

5.3.4 Learning Rate. Learning rate affects the number of communication rounds for the con-
vergence of a federated learning framework. Intuitively, fewer communication steps can decrease
the number of communication times between the server and clients, which implies less risks of
information leakage. We investigate the impact of learning rate with respect to the training loss
of FeSoG and report the results in Figure 10. The learning rather is selected from {0.1, 0.05, 0.01}.
We have the following observations:

— The training of FeSoG is smooth. The loss on three datasets all converges smoothly when in-
creasing the number of communications steps. It suggests that the federated learning frame-
work can effectively transfer informative gradients for the FeSoG to converge.

— Different datasets prefer different learning rates. For example, on the Epinions dataset, the
best learning rate η = 0.1. While both Ciao and Filmtrust datasets converge the fastest when
the learning rate η = 0.05. Learning rate has a critical influence on different datasets.
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Fig. 10. Loss curves for different learning rate η on three datasets.

Fig. 11. RMSE performance with respect to different δ and λ on three datasets.

5.3.5 Local Differential Privacy Parameters δ and λ. This section studies the correlations be-
tweenmodel performance and the LDPmodule. It contains two parameters: gradient clip threshold
δ and Laplace noise strength λ, as shown in Equation (14). Intuitively, this module alters gradients
by injecting noise to gradients to protect the user’s privacy. The injected gradients contribute to
the training because the server also aggregates them for updating. Therefore, we conduct exper-
iments to study the model performance with respect to the variations of these two parameters,
which are shown in Figures 11 and 12 for RMSE and MAE, respectively. We have the following
observations:

—With a fixed λ, FeSoG performs better when increasing δ . The reason is that a large δ tends to
clip less gradients. Therefore, the aggregated gradient information would be more accurate
to reflect the true gradients.

—With fixed δ , FeSoG performs worse when increasing λ. It is because a larger λ injects more
substantial Laplace noise to themodel gradient. Hence, the gradient learned from data would
be overwhelmed by generated noises. Thus, a smaller λ is preferred.

— There is a tradeoff in selecting optimal values. Although larger δ or smaller λ lead to better
performance, it would increase the risk of privacy leakage. If δ is infinitely large and λ is 0,
the server can revert the interactions by checking uploaded gradients from clients. Therefore,
we should choose an optimal pair to achieve acceptable performance with a small enough
privacy budget.

5.4 Ablation Study (RQ3)

In this section, we conduct an ablation study to analyze those components in FeSoG to validate
their effectiveness. We create three other variants of FeSoG:

— sharing GAT layer: FeSoG applies different GAT layers to learn the attention weights for
social neighbors and item neighbors. This variant shares the GAT layer for all neighbors.
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Fig. 12. MAE performance with respect to different δ and λ on three datasets.

Table 5. Ablation Study on FeSoG

Variant
Ciao Epinions Filmtrust

RMSE MAE RMSE MAE RMSE MAE
sharing GAT layer 2.0262 1.5863 1.8046 1.3876 2.148 1.5939
relative difference 5.8% 6.2% 0.43% 0.21% 2.57% 0.53%

w/o relational vector 2.1545 1.7023 1.8044 1.3903 2.1379 1.6441
relative difference 12.58% 13.96% 0.42% 0.40% 2.09% 3.7%

w/o pseudo items 1.9026 1.4849 1.7053 1.3021 2.0825 1.5798

relative difference −0.57% −0.58% −5.1% −5.97% −0.56% −0.36%
FeSoG 1.9136 1.4937 1.7969 1.3847 2.0942 1.5855
The relative difference represents the performance difference between the corresponding variant and
FeSoG. A positive difference indicates worse performance, while negative ones indicate better
performance.
Bold and underline values denote the best and second-best.

Hence, we only have one GAT layer to learn weight. Note that this variant also employs the
relational vector during aggregation.

—w/o relational vectors: this variant ignores the social relation and user-item relation vec-
tors during aggregation. As such, it directly aggregates all the neighbors with their associ-
ated attention weights. Since the attention weights are learned separately for user neighbors
and item neighbors, we should normalize those weights for all neighbors.

—w/o pseudo items: this variant is a special case of Section 5.3.2 where the number of the
pseudo item is 0. It cannot protect the user privacy data from a protection perspective be-
cause. Without pseudo items, we only use the true interacted items that have non-zero gra-
dients. However, we also include this variant for a comprehensive study.

The performance comparison of these methods on three datasets is reported in Table 5. We also
present the corresponding difference between FeSoG and the variants in a group. We have the
following observations:

—We should employ different GAT layers for users neighbors and item neighbors. Compared
with FeSoG, sharing GAT layer has worse performance. On the Filmtrust dataset, it has 2.57%
and 0.53% relative difference on RMSE andMAE, respectively. On the Epinions dataset, it has
0.43% and 0.21% relative difference on RMSE andMAE, respectively. The worst performance
of this variant is on Ciao, which has 5.8% and 6.2% relative difference on RMSE and MAE,
respectively.

—We should apply the relational vectors for aggregation. Compared with FeSoG, without re-
lational vectors has worse performance. On the Epinions dataset, it has 0.42% and 0.40%
relative difference on RMSE and MAE, respectively. On the Filmtrust dataset, it has 2.09%
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and 3.7% relative difference on RMSE and MAE, respectively. The worst performance of
this variant is on Ciao, which has 12.58% and 13.96% relative difference on RMSE and MAE,
respectively.

— Sampling pseudo items always worsen performance. However, compared with FeSoG, with-
out pseudo items is unable to protect the privacy because the server can easily infer the true
interacted items by checking which item gradient is not 0.

6 CONCLUSION AND FUTURE WORK

In this article, we propose a new federated learning framework, FeSoG, for social recommendation.
It decentralizes the data storage compared with existing social recommender systems. Moreover,
it comprehensively fuses the local user privacy data in clients and uses a server to train an FSRS
collaboratively. We address three challenges in designing this model: the heterogeneity of the data,
the personalization requirements of the local modeling, and privacy protection for communication.
The components in FeSoG jointly tackle these challenges: The relational attention and aggregation
of the local GNN distinguish social and item neighbors; The local user embedding inference pre-
serves the personalizing information for clients; The pseudo-item labeling, as well as the dynamic
LDP technique, protect the gradients from privacy data leakage. To verify the effectiveness of
FeSoG, we conduct extensive experiments. The overall comparing experiments demonstrate that
FeSoG significantly outperforms SOTA federated learning framework in solving social recommen-
dation problems. Detailed sensitivity analysis regarding the hyper-parameters further justifies the
efficacy of FeSoG infusing the social information and user-item interaction and preserving the
user privacy data locally. Moreover, the ablation study by dropping the components in FeSoG

demonstrates the necessity of our designing.
Though being effective in solving the social recommendation problem, there are still several

future directions. Firstly, we randomly sample pseudo items and predict their pseudo labels to
protect gradients. However, as the items may have their relations, we may investigate employing
an adaptive sampling of items rather than randomly. For example, we may train a local reinforce-
ment learning model to explore the non-interacted item, which can decrease the noise. Secondly,
we train the relational GNN only by leveraging local data. It is also possible to extend the local
graph to be a high-order graph. However, this requires data transferring among clients. To pro-
tect privacy, we may design a peer-to-peer communication of clients preserving the decentralized
storage characteristics of a federated recommender system. Finally, we can study the efficiency of
communication. Since it requires numerous communication rounds to train a federated learning
framework, it will be satisfying to decrease the time for communication or increase the bandwidth
for communication with large-scale clients.
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[22] Jakub Konečnỳ, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. 2016.
Federated learning: Strategies for improving communication efficiency. CoRR abs/1610.05492 (2016).

[23] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems. Com-

puter 42, 8 (2009), 30–37.
[24] Munan Li, Kenji Tei, and Yoshiaki Fukazawa. 2020. An efficient adaptive attention neural network for social recom-

mendation. IEEE Access 8 (2020), 63595–63606.
[25] Peng Liu, Lemei Zhang, and Jon Atle Gulla. 2019. Real-time social recommendation based on graph embedding and

temporal context. International Journal of Human-Computer Studies 121 (2019), 58–72.
[26] Ye Liu, Yao Wan, Lifang He, Hao Peng, and Philip S. Yu. 2020. KG-BART: Knowledge graph-augmented BART for

generative commonsense reasoning. In Proceedings of the AAAI Conference on Articial Intelligence, Vol. 35. 6418–6425.
[27] Zhiwei Liu, Yingtong Dou, Philip S. Yu, Yutong Deng, and Hao Peng. 2020. Alleviating the inconsistency problem of

applying graph neural network to fraud detection. In Proceedings of the 43rd International ACM SIGIR Conference on

Research and Development in Information Retrieval. ACM, 1569–1572.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 55. Publication date: August 2022.



Federated Social Recommendation with Graph Neural Network 55:23

[28] Zhiwei Liu, Ziwei Fan, Yu Wang, and Philip S. Yu. 2021. Augmenting sequential recommendation with pseudo-
prioritems via reversely pre-training transformer. In Proceedings of the 44th International ACM SIGIR Conference on

Research and Development in Information Retrieval.
[29] Zhiwei Liu, Lin Meng, Jiawei Zhang, and Philip S. Yu. 2020. Deoscillated graph collaborative filtering. CoRR

abs/2011.02100 (2020).
[30] Zhiwei Liu, MengtingWan, Stephen Guo, Kannan Achan, and Philip S. Yu. 2020. Basconv: Aggregating heterogeneous

interactions for basket recommendation with graph convolutional neural network. In Proceedings of the 2020 SIAM

International Conference on Data Mining. SIAM, 64–72.
[31] Hao Ma, Irwin King, and Michael R. Lyu. 2009. Learning to recommend with social trust ensemble. In Proceedings of

the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 203–210.
[32] HaoMa, Haixuan Yang,Michael R. Lyu, and Irwin King. 2008. Sorec: Social recommendation using probabilistic matrix

factorization. In Proceedings of the 17th ACM Conference on Information and Knowledge Management. 931–940.
[33] Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King. 2011. Recommender systems with social regu-

larization. In Proceedings of the 4th ACM International Conference on Web Search and Data Mining. 287–296.
[34] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-

efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics.
PMLR, 1273–1282.

[35] FrankMcSherry and Ilya Mironov. 2009. Differentially private recommender systems: Building privacy into the netflix
prize contenders. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 627–636.
[36] Nan Mu, Daren Zha, Yuanye He, and Zhihao Tang. 2019. Graph attention networks for neural social recommendation.

In Proceedings of the 31st IEEE International Conference on Tools with Artificial Intelligence. IEEE, 1320–1327.
[37] Hao Peng, Jianxin Li, Yangqiu Song, Renyu Yang, Rajiv Ranjan, Philip S. Yu, and Lifang He. 2021. Streaming social

event detection and evolution discovery in heterogeneous information networks. ACM Transactions on Knowledge

Discovery from Data 15, 5 (2021), 1–33.
[38] Hao Peng, Renyu Yang, Zheng Wang, Jianxin Li, Lifang He, Philip Yu, Albert Zomaya, and Raj Ranjan. 2021. Lime:

Low-cost incremental learning for dynamic heterogeneous information networks. IEEE Transactions on Computers.
[39] Tao Qi, Fangzhao Wu, Chuhan Wu, Yongfeng Huang, and Xing Xie. 2020. Privacy-preserving news recommendation

model learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings.
1423–1432.

[40] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized
ranking from implicit feedback. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. 452–461.

[41] Mónica Ribero, Jette Henderson, Sinead Williamson, and Haris Vikalo. 2022. Federating recommendations using dif-
ferentially private prototypes. Pattern Recognit. 129 (2022), 108746.

[42] Yelong Shen and Ruoming Jin. 2012. Learning personal+ social latent factor model for social recommendation. In
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1303–1311.

[43] Ajit P. Singh and Geoffrey J. Gordon. 2008. Relational learning via collective matrix factorization. In Proceedings of

the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 650–658.
[44] Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, and Jian Tang. 2019. Session-based social

recommendation via dynamic graph attention networks. In Proceedings of the 12th ACM International Conference on

Web Search and Data Mining. 555–563.
[45] Jiliang Tang, Huiji Gao, Xia Hu, and Huan Liu. 2013. Exploiting homophily effect for trust prediction. In Proceedings

of the 6th ACM International Conference on Web Search and Data Mining. ACM, 53–62.
[46] Jiliang Tang, Huiji Gao, and Huan Liu. 2012. mTrust: Discerning multi-faceted trust in a connected world. In Proceed-

ings of the 5th International Conference on Web Search and Web Data Mining. ACM, 93–102.
[47] Jiliang Tang, Huiji Gao, Huan Liu, and Atish Das Sarma. 2012. eTrust: Understanding trust evolution in an online

world. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 253–261.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Proceedings of the Advances in neural information processing systems.
5998–6008.

[49] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph
attention networks. CoRR abs/1710.10903 (2017).

[50] Chen Wang, Yueqing Liang, Zhiwei Liu, Tao Zhang, and Philip S. Yu. 2021. Pre-training graph neural network for
cross domain recommendation. In CogMI. IEEE, 140–145.

[51] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural graph collaborative filtering.
In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.
165–174.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 55. Publication date: August 2022.



55:24 Z. Liu et al.

[52] Xin Wang, Weike Pan, and Congfu Xu. 2014. Hgmf: Hierarchical group matrix factorization for collaborative rec-
ommendation. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge

Management. 769–778.
[53] ChuhanWu, FangzhaoWu, Yang Cao, Yongfeng Huang, and Xing Xie. 2021. Fedgnn: Federated graph neural network

for privacy-preserving recommendation. CoRR abs/2102.04925 (2021).
[54] Le Wu, Junwei Li, Peijie Sun, Richang Hong, Yong Ge, and Meng Wang. 2020. DiffNet++: A neural influence and

interest diffusion network for social recommendation. In Proceedings of the IEEE Transactions on Knowledge and Data

Engineering.
[55] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019. A neural influence diffusion model

for social recommendation. In Proceedings of the 42nd International ACMSIGIR Conference on Research andDevelopment

in Information Retrieval. ACM, 235–244.
[56] Le Wu, Peijie Sun, Richang Hong, Yanjie Fu, Xiting Wang, and Meng Wang. 2018. SocialGCN: An efficient graph

convolutional network based model for social recommendation. CoRR abs/1811.02815 (2018).
[57] Le Wu, Peijie Sun, Richang Hong, Yong Ge, and MengWang. 2021. Collaborative neural social recommendation. IEEE

Transactions on Systems, Man, and Cybernetics: Systems 51, 1 (2021), 464–476.
[58] QitianWu, Hengrui Zhang, XiaofengGao, PengHe, PaulWeng, HanGao, andGuihai Chen. 2019. Dual graph attention

networks for deep latent representation of multifaceted social effects in recommender systems. In Proceedings of the

World Wide Web Conference. ACM, 2091–2102.
[59] Congying Xia, Caiming Xiong, S. Yu Philip, and Richard Socher. 2020. Composed variational natural language gener-

ation for few-shot intents. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:

Findings. 3379–3388.
[60] Chengxu Yang, QiPeng Wang, Mengwei Xu, Shangguang Wang, Kaigui Bian, and Xuanzhe Liu. 2020. Heterogeneity-

aware federated learning. CoRR abs/2006.06983 (2020).
[61] Liangwei Yang, Zhiwei Liu, Yingtong Dou, Jing Ma, and Philip S. Yu. 2021. ConsisRec: Enhancing GNN for social

recommendation via consistent neighbor aggregation. In Proceedings of the 44th International ACM SIGIR Conference

on Research and Development in Information Retrieval.
[62] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine learning: Concept and applications.

ACM Transactions on Intelligent Systems and Technology 10, 2 (2019), 1–19.
[63] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. 2018. Graph con-

volutional neural networks for web-scale recommender systems. In Proceedings of the SIGKDD, Yike Guo and Faisal
Farooq (Eds.), 974–983.

[64] Chuxu Zhang, Lu Yu, Yan Wang, Chirag Shah, and Xiangliang Zhang. 2017. Collaborative user network embedding
for social recommender systems. In Proceedings of the 2017 SIAM International Conference on Data Mining, Nitesh V.
Chawla and Wei Wang (Eds.), SIAM, 381–389.

[65] Yao Zhou, Haonan Wang, Jingrui He, and Haixun Wang. 2021. From intrinsic to counterfactual: On the explainability
of contextualized recommender systems. arXiv:2110.14844. Retrieved from https://arxiv.org/abs/2110.14844.

[66] Yao Zhou, Jianpeng Xu, Jun Wu, Zeinab Taghavi, Evren Korpeoglu, Kannan Achan, and Jingrui He. 2021. PURE:
Positive-unlabeled recommendation with generative adversarial network. In Proceedings of the 27th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining. 2409–2419.

Received April 2021; revised August 2021; accepted November 2021

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 55. Publication date: August 2022.

https://arxiv.org/abs/2110.14844

