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ABSTRACT
Poverty status identification is the first obstacle to eradicating
poverty. Village-level poverty identification is very challenging
due to the arduous field investigation and insufficient information.
The development of the Web infrastructure and its modeling tools
provides fresh approaches to identifying poor villages. Upon those
techniques, we build a village graph for village poverty status iden-
tification. By modeling the village connections as a graph through
the geographic distance, we show the correlation between village
poverty status and its graph topological position and identify two
key factors (Centrality, Homophily Decaying effect) for identifying
villages.We further propose the first graph-basedmethod to identify
poor villages. It includes a global Centrality2Vec module to embed
village centrality into the dense vector and a local graph distance
convolution module that captures the decaying effect. In this paper,
we make the first attempt to interpret and identify village-level
poverty from a graph perspective.

CCS CONCEPTS
• Information systems→Web mining;Web applications.
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1 INTRODUCTION
Ending poverty is the common mission of mankind, which is listed
as the first pivotal goal of the United Nations’ Sustainable Develop-
ment1. To eradicate extreme poverty for all people everywhere, a
fundamental and critical question is where those vulnerable popula-
tions are located. This question refers to general poverty reduction
policy interventions to provide material assistance to the poor, such
as “where should the next school or main road be?” [2, 18] As the
basic socio-economic unit, the village is always seen as the cell of
the social system [19]; so poverty identification at the village level
has become the key to mapping poverty.

The household surveys and population census are the standard
ways to measure an area/individual’s socioeconomic conditions,
∗Corresponding author
1https://www.un.org/sustainabledevelopment/poverty/
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which provide policymakers with critical statistics for mapping out
resource assignments [7, 20, 21]. However, with the rapid socioe-
conomic and demographic changes, data collection at a higher fre-
quency is required, which means substantial costs [24]. Besides, due
to the diverse sources of income and the asymmetric information be-
tween the investigators and interviewees, the reliability and validity
of survey data are doubted. The development of Web infrastructure
andmodeling tools provide new opportunities and fresh approaches
to identify poor villages. In recent years, combining geospatial in-
formation and machine learning technology has become ever in-
creasing interest for research on poverty area identification[6, 8, 13].
Geospatial information, such as nighttime lights, day-time satel-
lite imagery, and crowd-sourced map data, can assist in capturing
poverty and socioeconomic conditions on a coarse scale[1, 3, 30].
Machine learning technology allows researchers to effectively and
efficiently utilize geospatial information[9, 10, 14]. However, these
methods rely too much on obtaining quantifiable geospatial fea-
tures while some information, such as nighttime light, is unfeasible
to collect at the village level. Besides, these methods pay much
attention to geographical characteristics but ignore the relationship
between villages that shows regional economic activities.

In this study, we propose a novel method to identify poor villages
based on the Web infrastructure and its widely applied graph-based
modeling methods [5, 27, 31, 32]. We build the village graph based
on distances and analyze the poverty occurrence from the graph per-
spective. Through field investigation, we collected village poverty
labels in Enshi prefecture, one of the poverty-prone cities in China,
and obtained the geological location by web map services. We iden-
tify two factors in the village graph to model poverty occurrence.
1) Village centrality in the graph, 2) Village’s distance homophily
decay effect. Based on the observation, we designed a graph-based
model to identify poor villages. A global Centrality2Vec module
to capture the centrality similarity between nodes. We reconstruct
the edges based on different kinds of nodes’ centrality measures
and perform random-walk-based skip-gram training [23] to obtain
centrality-aware node features. A local graph distance convolu-
tion is designed to aggregate information from direct neighbor-
hoods, where we model the homophily decay effect as the decayed
edge weight based on distance. The collected data and code are
open-sourced at https://github.com/YangLiangwei/Graph-Poverty-
Identification. Our contributions are summarized as follows:

https://doi.org/10.1145/3543507.3583864
https://github.com/YangLiangwei/Graph-Poverty-Identification
https://github.com/YangLiangwei/Graph-Poverty-Identification
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Figure 1: Study Area

• We conducted a field investigation to collect village-level
poverty data and released it to the research community.

• We make the first attempt to analyze and identify village
poverty occurrence from the graph perspective.

• A graph-based model is designed accordingly to identify
poor villages from the geologic topology.

2 POVERTY DATA ANALYSIS
In this section, we present the study area, data collection procedure,
and related data analysis.

2.1 Study Area
The study area, Enshi, is located in the southwest corner of Hubei
Province, China (shown in Fig. 1). This area covers 24,060.26 𝑘𝑚2,
with a distance of about 220 kilometers ranging from east to west
and the distance of about 260 kilometers ranging from north to
south. As a profoundly impoverished area, Enshi has 3.46 million
permanent residents, with 1.09 million being poor. All residents
are clustered in 2,606 villages. In 2013, the first year that China
started the target poverty alleviation (TPA) program [11, 12, 33],
729 among 2,606 villages were identified as being poor. As a poor
region, the per capita GDP of Enshi in 2021 is 34,300 CNY, which
is significantly lower than the national figure of 70,900 CNY; the
per capita disposable income of these rural residents is 11,600 CNY,
which is significantly lower than the national figure of 16,000 CNY.
It is typical to take Enshi Prefecture as an example to study the
village poverty problem of mountainous areas.

2.2 Data Collection
We surveyed through face-to-face interviews with County Poverty
Alleviation Office leaders using a semi-structured questionnaire in
Enshi. The data covers the number of people in each administrative
village, the number of poor people, and the incidence of poverty.

The village graph Gvillage = {V, E} is built to represent the con-
nections between villages, whereV = {𝑣1, 𝑣2, · · · , 𝑣𝑛} is the village
set and E = {𝑒1, 𝑒2, · · · , 𝑒𝑚} is the edge set. The edge 𝑒 = (𝑣𝑖 , 𝑣 𝑗 )
is constructed if the distance between 𝑣𝑖 and 𝑣 𝑗 is smaller than a
distance threshold 𝑑 . The distance can reflect their geographical
relationship. The economic relationship is also reflected because a
closer distance usually indicatesmore frequent economic exchanges.
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Figure 2: Node Centrality analysis on Villages

Taking advantage of online web tools, we utilize the Google map2 to
acquire the latitude and longitude of each village as 𝑣𝑖 = (𝑙𝑎𝑡𝑖 , 𝑙𝑜𝑛𝑖 ).
Then we calculate the geodesic distance [15] between two villages
on the surface of the ellipsoidal model of the Earth. One edge forms
if the distance between two villages is smaller than 𝑑 .

2.3 Node Centrality Analysis
A place that has rich natural resources and a suitable living en-
vironment tends to gather households and form a village cluster.
Simultaneously, economic activities are also boosted. The clustering
effect can be reflected by the node centrality measure on village
graph Gvillage. Thus, we first analyze the relationship between vil-
lage node centrality and poverty occurrence. The results of 𝑡 test
show that the centrality of the poor villages is smaller than that of
the non-poor (𝑝 < 0.001). The poor/non-poor village distribution
concerning two kinds of centrality measures, degree, and K-Core [4]
also illustrate that (Fig. 2). The degree centrality distribution for
poor villages is 7.60±5.68while for non-poor villages is 10.31±6.82.
The K-Core centrality distribution for poor villages is 5.41 ± 3.76
while for non-poor villages is 6.88±4.01. Node centrality can reveal
the village’s poverty status to some extent. Nodes with similar cen-
trality are not necessarily connected. Global structural information
is required to capture centrality similarity for village-level poverty
identification. It motivates the design of Global Centrality2Vec.

2.4 Distance Analysis
Distance between villages can reflect the transportation difficulty,
which has a direct influence on the economic activity between
villages. In Fig. 3(left), we show the increase of different types of
neighborhoods when gradually increasing the distance. The “P
Poor” indicates the number of poor village neighborhood of the
poor center village, “P Non Poor” represents the number of non-
poor villages in the neighborhood of the poor center village, etc. In
Fig. 3 (right), we present the change in poor village percent with
the increase of village distance. With the increase in distance, the
poor village percentage in neighborhoods is decreasing for poor
villages while it is increasing for non-poor villages. It shows the
homophily effect [22] on Gvillage that geologically near villages
tend to have similar poverty status. The homophily effect is within
a local scope, which decreases with the increase in distance. Based
on the analysis, we model the homophily decay effect into message
passing and propose the graph distance convolution to aggregate
local neighborhood information.

2https://developers.google.com/maps
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Figure 3: Distance analysis on Villages

3 METHOD
In this section, we introduce the designed graph-based model. As
shown in Fig. 4, it consists of a global Centrality2Vec module to
capture the village’s centrality similarity, and a local graph distance
convolution module that aggregates neighborhood information.

3.1 Global Centrality2Vec
The analysis from Sec. 2.3 shows poor villages tend to have a smaller
centrality in Gvillage. We propose Centrality2Vec to embed differ-
ent kinds of centrality into one dense vector. Centrality2Vec first
computes different kinds of centrality for each node such as degree
and core centrality. To capture the surrounding structure topology
as in struct2vec [25], we compute village centrality similarity based
on the ordered centrality sequences of villages within 1−hop in
Gvillage. The ordered centrality sequences of village 𝑣𝑖 and 𝑣 𝑗 are
represented as 𝑆𝑖 = (𝑐𝑖1, 𝑐

𝑖
2, · · · , 𝑐

𝑖
𝑛) and 𝑆 𝑗 = (𝑐 𝑗1, 𝑐

𝑗

2, · · · , 𝑐
𝑗
𝑚), re-

spectively. As the number of neighborhoods is not the same for
each node, the length of 𝑆𝑖 and 𝑆 𝑗 can be different. To measure
the similarity between two different length sequences, we compute
the pair-wise village similarity based on Dynamic Time Warping
(DTW) [26]. DTW computes the change cost from 𝑆𝑖 to 𝑆 𝑗 as:

Cost(𝑆𝑖 , 𝑆 𝑗 ) =
∑︁

𝑐 𝑗 ∈𝑆 𝑗

min
𝑐𝑖 ∈𝑆𝑖

cost(𝑐 𝑗 , 𝑐𝑖 ) . (1)

For pair of element 𝑐 𝑗 and 𝑐𝑖 , the transform cost is defined as:

cost(𝑐 𝑗 , 𝑐𝑖 ) = 𝑚𝑎𝑥 (𝑐 𝑗 , 𝑐𝑖 )
𝑚𝑖𝑛(𝑐 𝑗 , 𝑐𝑖 )

− 1. (2)

For each village, we add edges to its most similar centrality villages
with the Top-K smallest cost. For each centrality measure, we obtain
one centrality similarity graph. In this paper, we utilize degree and
core centrality to obtain Gdegree and Gcore, respectively. To capture
the centrality similarity of different measures, we combine the two
graphs and define the random-walk transition probability as:

𝑝 (𝑣 𝑗 |𝑣𝑖 ) =


1
|N𝑖

degree+N
𝑖
core |

(𝑣𝑖 , 𝑣 𝑗 ) ∈ (Edegree ∪ Ecore)

0 Otherwise,
(3)

where N𝑖
degree is the neighbor set of 𝑣𝑖 in Gdegree, and Edegree is

the edge set of Gdegree. The definition is the same for Gcore. Then
we perform random walks on the combined transition probability
matrix to collect walk sequences 𝑊𝑘 = (𝑣𝑘1 , 𝑣

𝑘
2 , · · · , 𝑣

𝑘
𝑛 ), where

𝑣𝑖 ∈ Vvillage. Based on the collected sequences, we aim to learn
village representation H ∈ R |V |∗𝑑 that can capture the centrality

similarity, where 𝑣𝑖 is represented as ℎ𝑖 . Then we use the skip-gram
model to update H by optimizing the context occurrence loss as:

LH = −
∑︁
𝑊

log 𝑃 ({𝑣𝑊𝑖−𝑧 , · · · , 𝑣
𝑊
𝑖+𝑧 }/𝑣

𝑊
𝑖 |𝑣𝑊𝑖 ) (4)

= −
∑︁
𝑊

𝑖+𝑧∏
𝑗=𝑖−𝑧,𝑗≠𝑖

log 𝑃 (𝑣𝑊𝑗 |𝑣𝑊𝑖 ), (5)

where𝑊 is the random walked village sequences, 𝑧 is the window
size for training, and the probability 𝑃 (𝑣 𝑗 |𝑣𝑖 ) is calculated by:

𝑃 (𝑣 𝑗 |𝑣𝑖 ) =
exp(h𝑗 · h𝑖 )∑
𝑒∈H exp(h · h𝑖 )

. (6)

Compared with struct2vec, Centrality2Vec focuses more on node
centrality. It explicitly utilizes multiple kinds of node centrality
measures. For village 𝑣𝑖 , it embeds different kinds of centrality
similarity into one dense vector h𝑖 , which is used as the input
feature to the local graph distance convolution module.

3.2 Local Graph Distance Convolution (LGDC)
Distance analysis from Sec 2.4 shows the homophily effect on
Gvillage. We design a local graph convolution module to aggregate
neighborhood information. A general graph neural network (GNN)
can be formalized as:

h(𝑙+1)
𝑖

= h(𝑙 )
𝑖

⊕ AGG(𝑙+1) ({h(𝑙 )
𝑗

| 𝑣 𝑗 ∈ N𝑖 }), (7)

where h(𝑙 )
𝑖

is 𝑣𝑖 ’s embedding on 𝑙-th layer,N𝑖 is the neighbor set of
𝑣𝑖 , AGG is the aggregation function on neighborhood information,
and ⊕ is the reduction function to combine the neighborhood infor-
mation and node’s own embedding. We model the distance-based
homophily decaying effect into the aggregation function as:

AGG(𝑙+1) ({h(𝑙 )
𝑗

| 𝑣 𝑗 ∈ N𝑖 }) =
∑︁

𝑣𝑗 ∈N𝑖

𝛼dist𝑖,𝑗√︁
|N𝑖 |

√︁
|N𝑗 |

h𝑗 , (8)

where dist𝑖, 𝑗 is the distance between 𝑣𝑖 and 𝑣 𝑗 , 0 ≤ 𝛼 ≤ 1 is
the hyper-parameter to control the decaying effect. When 𝛼 = 1
indicates there is no decaying. The reduction function is defined as:

𝑒
(𝑙 )
𝑖

⊕ AGG(𝑙+1) (·) = ( 1
|N𝑖 |

h𝑖 + AGG(𝑙+1) (·))W + 𝑏, (9)

where W and 𝑏 is the learnable parameters for graph distance
convolution. After several layers of graph convolution, we map the
village to a 2 dimensional vector to predict the village type. ReLU
activation function is applied between layers.

4 EXPERIMENTS
In this section, we conduct experiments to test the model’s effec-
tiveness and the influence of designed modules.

4.1 Experimental Setup
The dataset statistics is shown in Table 1. The collected dataset
covers 2,705 villages with more than 3 million population. We con-
struct village graph Gvillage with a distance threshold 𝑑 = 5𝑘𝑚. We
compare our model with two kinds of baselines. Struct2Vec [25] is
a graph embedding method that can capture node structure similar-
ity. The other kind is GNN models including GCN [16], GAT [28],
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Figure 4: Model Framework

Table 1: Statistics of the Collected Datasets

Type Number

Poor Villages 729
Vulnerable Population 1,104,931
Non-poor Villages 1,976
Non-vulnerable Population 2,439,925
Graph Edges (𝑑 = 5𝑘𝑚) 28,613
Node Average Degree (𝑑 = 5𝑘𝑚) 10.58
Graph Sparsity 0.3910%

SGC [29] and APPNP [17]. For a fair comparison, we perform the
same grid search and keep the layers as 2 for all models.

4.2 Performance Evaluation

Table 2: Overall comparison, the best and second-best results
are in bold and underlined, respectively

Model Accuracy Precision Recall F1 AUROC
Struct2Vec 0.7282 0.5723 0.5326 0.5214 0.5859
GCN 0.7449 0.6929 0.5385 0.5090 0.5642
GAT 0.7338 0.6214 0.5221 0.4825 0.5302
SGC 0.7301 0.4918 0.4996 0.4285 0.5070
APPNP 0.7504 0.7573 0.5401 0.5074 0.5880
Our method 0.7607 0.7926 0.5612 0.5434 0.6164

Experiment results are shown in Table 2. We can observe that our
model achieves the best performance on all metrics, which indicates
our model can effectively utilize the global centrality similarity and
the local neighborhood information. Compared with accuracy, the
recall score is much less. It is because of the label imbalance. Only
about 1/4 of the villages are poor-villages, which makes all models
tend to predict villages as non-poor. At last, though we set the
first baseline for graph-based village identification, the task is still
challenging and there is still much room for improvement.

4.3 Model Analysis
We make further model analysis based on the ablation study and
the sensitivity of 𝛼 designed in the local graph distance convolution
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Figure 5: Model analysis. Left: ablation study, where A is our
model, B is w/o Global Centrality2Vec, C is w/o local graph
distance convolution. Right: the impact of 𝛼 .

module. The ablation study is shown in Fig. 5 (left). We can observe
that the whole model achieves the best. It shows the joint modeling
of global centrality similarity and local graph distance convolution
is effective. The model w/o Centrality2Vec performs the worst,
which indicates the importance of village centrality similarity. We
then show the influence of 𝛼 in Fig. 5 (right). 𝛼 decides the distance
decaying effect during graph convolution. Larger 𝛼 indicates slower
decaying. With the increase of 𝛼 , accuracy first increases to its peak
at 𝛼 = 0.8 then drops. It shows a suitable decaying speed that fits the
data can boost performance, which also validates the effectiveness
of modeling the decaying effect into local graph convolution.

5 CONCLUSION
Poverty is still a challenging problem faced by mankind. In this
paper, we make the first attempt to identify village-level poverty
status from the graph perspective. By connecting villages as a graph
based on geographic distance, we observe two key factors (Cen-
trality, Homophily Decay effect) for identification. Accordingly, we
design a global Centrality2Vec and a local graph distance convolu-
tion module to identify poor villages. We further open-sourced the
collected poverty data to the community for further research.
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